
Git, GitHub and
Markdown - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/03-git-github-and-markdown/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/03-git-github-and-markdown/03-git-github-and-markdown-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Introduction to your first chapter

Objectives

Git

Architecture

Commits, hashes and tags

Branches

Merging branches

Conflicts

Ignore files

Summary

Cheat sheet

Alternatives

Resources

GitHub

Social platform

Free features and PRO features

Users and organizations

Issues, pull requests and forks

Summary

Alternatives

Resources

Markdown

Markdown and output formats

Syntax

Specifications

Summary

Alternatives

Resources

Practical content

Create and configure your GitHub account

Install and configure Git

Enable SSH authentication

Sign commits with SSH

•

•

•

•

•

•

•

2 Table of contents

Create your own profile README

Add yourself to the list of students in the GitHub organization

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Sources

•

•

•

•

•

3 Table of contents

Introduction to your first

chapter

Welcome to the first chapter of the course!

Each of the chapter of this course will follow quite the same structure:

A short introduction to the topic with its objectives ;

A theoretical part to explain the topic ;

A practical part to apply what you learned ;

A conclusion part to summarize what you did and learned and to test

your knowledge ;

A quick feedback section to let us know if it was easy or hard and how

we can improve ;

Additional resources to go further as well as the sources used to create

the chapter.

This allows you to start with whatever works better for you: the theoretical

followed by the practical, or the practical followed with the theoretical part

in parallel.

While reading the chapters, you might find what is called "adminitions" or

"alerts".

They look like this:

Note

Hey! I'm a note! Glad you read me!

They are here to highlight important information that you should take into

account.

Here are the different types of admonitions you might find and their

meaning:

Note

•

•

•

•

•

•

4 Introduction to your first chapter

Highlights information that users should take into account, even when

skimming.

Tip

Optional information to help a user be more successful.

Important

Crucial information necessary for users to succeed.

Warning

Critical content demanding immediate user attention due to potential risks.

Caution

Negative potential consequences of an action.

We might redirect you to some official documentation or external resources

to follow to set up your environment or to learn more about a specific topic.

These external resources are here to help you. We redirect you to them to

avoid repeating what is already well maintained and explained elsewhere.

We try our best to keep the content as up-to-date as possible. If you find

something that is not up-to-date, do not hesitate to open a discussion, an

issue, a pull request to fix it.

What you see and do in a current chapter might be used in a future chapter.

This is why it is important to follow the steps and to understand what you

are doing. You must keep the code you write, the documentation you create

and the builds you make.

What you see is the result of many hours of work to provide you with the

best content possible. We hope you will enjoy it and learn a lot!

However, if anything is unclear, does not work or needs an improvement, do

not hesitate to ask questions or give feedback in the GitHub Discussions as

described in the Finished? Was it easy? Was it hard? section. Since this is

the first chapter, do not hesitate to do so.

5 Introduction to your first chapter

The teaching staff considers that there is no stupid question. You are here

to learn and we are here to help you! Let's work as a team so that you can

succeed!

Final note: we try our best to provide you working instructions and right

information. However, if something is wrong, we might need to update the

content to fix it. We will inform you but you might need to come back and

check the updated content. We apologize in advance if this situation

happens.

Let's get started!

6 Introduction to your first chapter

Objectives

This chapter will help you to understand how Git and GitHub work, how you

can use Markdown to write various documents from documentation to

profiles, and how to use some of the features of Git/GitHub such as GitHub

Discussions, the main place to ask questions in this course.

These skills are essential for the rest of the course (and your future!), as you

will use Git and GitHub to submit your practical works and to collaborate

with your team.

You will also learn how to create your own profile README on GitHub and

add yourself to the GitHub Organization of the course using a common Git

workflow.

This is a great way to present yourself and your work to the world! Being

part of the course organization will also allow you to be notified by the

teachers when something important happens through the use of GitHub

Teams and GitHub Discussions.

7 Objectives

Git

Git is a free and open source distributed version control system (VCS)

designed to handle everything from small to very large projects with

speed and efficiency.

https://git-scm.com/

Created by Linus Torvalds in 2005 to manage the Linux kernel source code,

Git allows to track changes in any set of files, usually used for coordinating

work among programmers during software development.

Architecture

Git is a client-server system, where the server is called a repository and the

clients are called clones.

The repository is the single source of truth, and the clones are the local

copies of the repository.

Git is a distributed VCS, which means that each clone is a full copy of the

repository. This allows to work offline.

Commits, hashes and tags

Git uses commits to track changes. A commit is a snapshot of the repository

at a given time. Each commit has a unique identifier, called a hash. The

hash is computed from the content of the commit, so it is impossible to

modify a commit without changing its hash.

Commits can be tagged to create a reference to a commit. This is often used

to mark a commit as a release.

Commits can be signed to prove that the commit was made by a specific

person. This is done for security reasons. It means that the commit was

signed by the author and adds a layer of security to the commit and

confidence to the users of the repository.

8 Git

https://git-scm.com/

Branches

Git uses branches to track different versions of the repository. The default

branch is often called main (the legacy name was master).

Each branch has a name and a pointer to a commit. The pointer is called a

head. The head of the main branch is called HEAD.

Often, when implementing a new feature, a new branch is created. This is

done by creating a new branch from the main branch.

Once you made all the changes, the modified files are staged and a new

commit is created. The commit is then pushed to the repository.

Commits can be compared to see the differences between the staged files

and the working directory. This is done by comparing the files with the last

commit.

Commits can be pulled from the repository into the current branch.

Merging branches

Collaborating on a project is done by creating branches, making and

committing changes, pushing and merging the branches back into the target

branch.

There are three main ways to merge branches:

Merge: merge the changes from the two branches into a new commit.

This is the default behavior of Git.

Rebase: append the source branch to the target branch so no new

commits are created. This is a more advanced technique.

Squash: Combine multiple commits into a single one to reduce the

number of commits in a branch.

Conflicts

Working collaboratively can lead to conflicts. Conflicts happen when two or

more people make changes to the same file at the same time. Git is able to

detect conflicts and will ask the user to resolve them.

•

•

•

9 Git

Ignore files

Files can be ignored by Git. This is done by creating a .gitignore file at the

root of the repository. This allows to avoid committing files that should not

be committed, such as IDE configuration files.

We encourage you not to use gitignore generators (such as https://

gitignore.io/), as they often add too many files to the ignore list. It is better

to add files to the ignore list as you need it.

We think it is a good practice to ignore all binary files and to only commit

source files. This allows to keep the repository small and to avoid conflicts.

Files can be ignored by name, by extension or by pattern. The syntax is very

similar to the one used in the terminal.

Here is an example of a .gitignore file:

More information about gitignore can be found in the official

documentation: https://git-scm.com/docs/gitignore.

Summary

Git is a distributed VCS

Git uses commits to track changes

Git uses branches to track different versions of the repository

Git can pull changes from a branch into another

Git can merge, rebase or squash branches/commits

Git can detect and resolve conflicts

We encourage you to learn how to use Git from the command line, so you

can still use it everywhere (even on a server).

Ignore all text files inside the repository

*.txt

Except the input files in the `example` directory

!examples/**/*_input.txt

Ignore the `target` directory at the root level of the gitignore file but not the others

`target` directories

/target/

•

•

•

•

•

•

10 Git

https://gitignore.io/
https://gitignore.io/
https://git-scm.com/docs/gitignore

Cheat sheet

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Subversion

Mercurial

Bazaar

Clone a Git repository

git clone <url>

Create a branch and switch to it

git checkout -b <branch-name>

Switch to a branch

git checkout <branch-name>

Add changes to the staging area

git add <file>

View differences between the working directory and the staging area

git diff <file>

Check Git status

git status

Commit changes

git commit -m "Commit message"

Push changes to a branch

git push origin <branch-name>

Pull changes from a branch

git pull origin <branch-name>

Merge a branch into another

git merge <branch-name>

•

•

•

11 Git

https://subversion.apache.org/
https://www.mercurial-scm.org/
https://bazaar.canonical.com/en/

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

Atlassian Git tutorials - Beginner - Atlassian tutorials are great!

Atlassian Git tutorials - Getting started

Atlassian Git tutorials - Collaborating

Atlassian Git tutorials - Advanced Tips

Learn Git Branching

Missing item in the list? Feel free to open a pull request to add it!

•

•

•

•

•

12 Git

https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/syncing
https://www.atlassian.com/git/tutorials/advanced-overview
https://learngitbranching.js.org/

GitHub

GitHub is a platform and cloud-based service for software

development and version control using Git, allowing developers to

store and manage their code.

https://github.com

GitHub is a web-based Git repository hosting service. It provides all the

features of Git, plus some additional features.

It is the most popular Git repository hosting service, with more than 372

million repositories (January 2023), a home for many open source projects

and a place where many companies host their private repositories.

Social platform

GitHub is a social platform. It allows to follow other users and to star

repositories. It also allows to fork repositories, which means to create a

copy of a repository in your own account.

Free features and PRO features

GitHub offers features on top of Git. Some features are only available for

public repositories. To enable them for private repositories, you need to

upgrade to a PRO account, which is not free.

As a HEIG-VD student, you can get a PRO account for free with the GitHub

Global Campus for students program.

Users and organizations

Repositories can be owned by a user or by an organization.

An organization can have multiple members, and repositories can be shared

between members. It is a good practice to create an organization for a

project that will be worked on by multiple people.

13 GitHub

https://github.com
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-global-campus-for-students
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-global-campus-for-students

Issues, pull requests and forks

GitHub also provides a wiki for each repository, a project board to manage

tasks, an issue tracker to report bugs and a pull request system to review

and merge changes.

Contributing to a project hosted on GitHub is done by forking the

repository, making changes and opening a pull request to merge the

changes back into the original repository.

Forking is only needed if you are not a member of the repository or

organization.

Once a branch is ready to be merged into the target branch, it is good

practice to open a pull request (or a merge request on GitLab). A pull

request is a request to merge a branch into another. It is a way to discuss

the changes before merging them.

Reviewing a pull request is done by commenting on the changes. The

reviewer can ask for changes to be made before merging the branch or can

approve the changes.

Once the pull request is approved, the branch can be merged into the

target branch.

By default, GitHub does not delete the branch once it is merged. You might

want to enable this by default in your repository settings or delete it

manually. It avoids to cumulate out-dated branches in your repository.

Summary

The whole process would be as follow:

Open an issue to discuss the feature (optional, but recommended)

Clone or fork the project and checkout to a new branch

Make your changes, commit and push them as often as you want

Create the pull request

The maintainers review and merge if OK

You can delete the branch or the fork

1.

2.

3.

4.

5.

6.

14 GitHub

Alternatives

Alternatives are here for general knowledge. No need to learn them.

GitLab - My personal favorite

Bitbucket - My least favorite

Gitea - Very good self-hosted alternative

Forgejo - A community owned soft fork of Gitea with upcoming support

of forge federations (see more with the ForgeFriends project).

Gogs

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

GitHub's Start your journey - A great resource to learn the basics of

GitHub!

Missing item in the list? Feel free to open a pull request to add it!

•

•

•

•

•

•

15 GitHub

https://gitlab.com/
https://bitbucket.org/
https://gitea.io/
https://forgejo.org/
https://forgefed.org/
https://forgefriends.org/
https://gogs.io/
https://docs.github.com/en/get-started/start-your-journey

Markdown

Markdown is a lightweight markup language for creating formatted

text using a plain-text editor.

https://daringfireball.net/projects/markdown/

Markdown was created by John Gruber in 2004 with the help of Aaron

Swartz (co-founder of Reddit and an Internet hacktivist). It is a simple

markup language that allows to create formatted text using a plain-text

editor.

It is widely used on the Internet, especially on GitHub, and GitLab. It is also

used in many static site generators, such as Hugo and MkDocs.

Markdown and output formats

The syntax of Markdown is very simple and easy to learn. It is a good

alternative to HTML for creating simple web pages, documentation, README

files, etc. The extension of a Markdown file is .md.

You can export Markdown files to HTML, PDF, DOCX, etc. making it a very

versatile format.

It is also possible to use HTML in Markdown files, so it is possible to create

more complex documents.

In fact, the exact current document you are reading right now is written in

Markdown.

Syntax

Markdown is a markup language, which means that it uses special

characters to format the text. It is very similar to the syntax used in Discord,

Telegram, WhatsApp, etc.

16 Markdown

https://daringfireball.net/projects/markdown/
https://gohugo.io/
https://www.mkdocs.org/

Headings

To create headings, use the # character. The number of # characters

determines the level of the heading.

Text formatting

Text formatting can be done using *, _, ~, ` or > characters.

Code blocks

Code blocks can highlight code syntax for many languages. Horizontal rules

can be used to separate sections with ---.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

This is italic and _this as well_.

This is bold and **this as well**.

This is ~~strikethrough~~.

This is `inline code`.

> This is a quote

```java

System.out.println("Hello World!");

```

```javascript

console.log("Hello World!");

```

17 Markdown

Unordered lists

Unordered lists can be created using - or * characters.

Ordered lists

Ordered lists can be created using numbers followed by a . character. Only

the first number matters, the rest can be anything (but it is not

recommended for readability).

Links

Links can link to local files, headings, or references.

```python

print("Hello World!")

```

List one

- Item 1

- Item 2

- Item 3

List two

- Item 1

- Item 2

- Item 3

1. Item 1

2. Item 2

3. Item 3

4. Still item 4

5. Still item 5

[GitHub](https://github.com/)

<https://gitlab.com>

18 Markdown

Images

Images can be added using the same syntax as links, but with a ! character

in front of the link. The text field will be used as the alt text for accessibility

and SEO. An optional title can be set with "" characters.

Tables

Tables can be created using the | character to separate columns and -

characters to separate the header from the content. The header is optional.

The text alignment can be specified using : characters.

HTML

HTML can be used in Markdown files. This allows to create more complex

documents. It is also possible to use CSS to style the document. This is not

covered in this course and I would not recommend it as the goal of

Markdown is to be simple.

If you have a look at the source code of this document (the Markdown

version on GitHub), you will see that it is written in Markdown and that it

uses HTML to create the slides with the help of Marp.

[`README.md`](./README.md)

[Jump to "Markdown"](#markdown)

[HEIG-VD][heig-vd]

[heig-vd]: https://heig-vd.ch

![A landscape of the Alps](./images/alps.jpeg)

![A schema describing the Git workflow](./images/schema.svg "Git workflow")

| Header 1 | Header 2 | Header 3 |

| -------- | :------: | -------: |

| Cell 1 | Cell 2 | Cell 3 |

| Cell 4 | Cell 5 | Cell 6 |

19 Markdown

https://marp.app/

"Hacky" tips

You can use HTML comments to hide content from the Markdown parser.

The same can be achieved using a link-reference.

New lines can be added between two lines with two spaces at the end of

the line or by using a backslash at the end of a line.

Specifications

Markdown is not a standard and there are many implementations. The most

popular one is CommonMark. GitHub uses a slightly different version called

GitHub Flavored Markdown.

Some projects use custom extensions to add more features to Markdown.

For example:

Material for MkDocs uses custom extensions to add more features to

Markdown.

Marp uses a custom syntax to manage background images in slides.

Summary

Markdown is easy to learn and use

Markdown can be used to create documentation

Markdown can be used to create slides

Markdown can be exported to many formats:

For example, the presentations of this course are exported to Web

and PDF with the help of Marp

<!-- This is a comment -->

[This is a comment]: #

<!-- You might want to highlight these lines to see the double spaces -->

A line

Another line

A line\

Another line

•

•

•

•

•

•

20 Markdown

https://commonmark.org/
https://github.github.com/gfm/
https://squidfunk.github.io/mkdocs-material/
https://marp.app/
https://marp.app/

For example, the course materials of this course are exported to PDF

with the help of Pandoc and weasyprint

Alternatives

Alternatives are here for general knowledge. No need to learn them.

reStructuredText

AsciiDoc

Textile

LaTeX - You might want to consider this if you need to write a scientific

paper and/or your bachelor/master thesis as it is the standard in the

scientific community and much more powerful than Markdown.

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

Markdown Guide - Examples and explanations on Markdown

specification

GitHub Flavored Markdown Spec

CommonMark Spec

Missing item in the list? Feel free to open a pull request to add it!

•

•

•

•

•

•

•

21 Markdown

https://pandoc.org/
https://weasyprint.org/
https://docutils.sourceforge.io/rst.html
https://asciidoc.org/
https://textile-lang.com/
https://www.latex-project.org/
https://www.markdownguide.org/
https://github.github.com/gfm/
https://commonmark.org/

Practical content

Create and configure your GitHub account

GitHub is a social platform, home for many open source projects. You will

use it to publish your work and to collaborate with your team. It is a great

visibility tool for your (future) career.

In this section, you will create and configure your GitHub account. If you

already have one, ensure that it is properly configured. Please avoid the use

of GitHub CLI/Desktop or any other application to manage your repositories

to be able to use Git everywhere.

Create a GitHub account

If you do not have a GitHub account yet, you will need to create one. We

recommend using your HEIG-VD email address to create your account.

Follow the official documentation to create your account: https://

docs.github.com/en/get-started/signing-up-for-github/signing-up-for-a-

new-github-account.

Important

Do not forget to verify your email address!

Enable two-factor authentication (optional, but highly

recommended)

Two-factor authentication adds an extra layer of security to your account. It

will require you to enter a code sent to your phone each time you log in to

your account.

Follow the official documentation to enable two-factor authentication:

https://docs.github.com/en/authentication/securing-your-account-with-

two-factor-authentication-2fa.

22 Practical content

https://docs.github.com/en/get-started/signing-up-for-github/signing-up-for-a-new-github-account
https://docs.github.com/en/get-started/signing-up-for-github/signing-up-for-a-new-github-account
https://docs.github.com/en/get-started/signing-up-for-github/signing-up-for-a-new-github-account
https://docs.github.com/en/get-started/signing-up-for-github/verifying-your-email-address
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa

Enable your PRO account

Having a PRO account will allow you to unlock all the features of GitHub

and other products, such as Copilot. As a HEIG-VD student, you can get a

PRO account for free.

Follow the official documentation to enable your PRO account: https://

docs.github.com/en/education/explore-the-benefits-of-teaching-and-

learning-with-github-education/github-global-campus-for-students.

Install and configure Git

Git will be used for the rest of the course to work collaboratively and to

submit your practical work. It is important to have it installed and

configured properly.

In this section, you will install Git on your system. If you already have it,

please check that it is up to date.

Install Git

Go to the official website and follow the instructions on how to install Git

on your system: https://git-scm.com/downloads. As you are using a

Windows Subsystem for Linux (WSL), you can follow the instructions for

Linux (Ubuntu).

Check the installation

Open a terminal and type git --version.

The output should be similar to this:

Warning

Ensure you have at least version 2.34.0 of Git installed. If you have an older

version, you might not be able to use some features mentioned in this

course.

git version 2.34.1

23 Practical content

https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-global-campus-for-students
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-global-campus-for-students
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-global-campus-for-students
https://git-scm.com/downloads

Configure Git

Git needs to know your name and email address to be able to label your

commits properly.

Important

Use the same email address you used to create your GitHub account.

Open a terminal and type the following commands:

Enable SSH authentication

SSH is a secure protocol to communicate with a server. It is used to

authenticate users on GitHub. You will learn a bit more about SSH in a

future chapter. For the time being, using SSH with Git will enable you not

have to input your username and password each time you want to push or

pull changes from a repository, contrary to HTTPS.

In this section you will enable SSH authentication on your GitHub account.

Generate a SSH key

Important

Follow the Linux instructions on the GitHub documentation! By default, the

Windows instructions are shown if you are on Windows.

Follow the official documentation to generate a SSH key: https://

docs.github.com/en/authentication/connecting-to-github-with-ssh/

generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent.

Caution

Never share your private key with anyone! It must be kept secret and

confidential, just like a password.

Set your name

git config --global user.name "Your Name"

Set your email address

git config --global user.email "Your Email"

24 Practical content

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

The public key can be shared with anyone. It is used to verify that the

private key was used to sign a message.

If you ever lose your private key, it can be quite problematic. Have a backup

of your SSH key pair in a safe place.

Add the public SSH key to your GitHub account

Important

Follow the Linux instructions on the GitHub documentation! By default, the

Windows instructions are shown if you are on Windows.

Follow the official documentation to add the public SSH key to your GitHub

account: https://docs.github.com/en/authentication/connecting-to-github-

with-ssh/adding-a-new-ssh-key-to-your-github-account

Test the configuration

You can try to clone this very repository using SSH:

If you are able to clone the repository, it means that your SSH key is

properly configured.

The URL of a repository can be found in the Code tab of the repository, as

shown in the following screenshot:

Clone the course repository using SSH in a directory named "heig-vd-dai-course"

git clone git@github.com:heig-vd-dai-course/heig-vd-dai-course.git "heig-vd-dai-course"

25 Practical content

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Important

By default, GitHub will show you the HTTPS URL. You need to click on the

SSH tab to see the SSH URL.

Let's switch to a bit of theory now!

Sign commits with SSH

Signing commits is a good practice to prove that you are the author of a

commit.

In this section, you will sign all your commits with SSH (source: https://

docs.github.com/en/authentication/managing-commit-signature-

verification/about-commit-signature-verification#ssh-commit-signature-

verification).

26 Practical content

https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification#ssh-commit-signature-verification
https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification#ssh-commit-signature-verification
https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification#ssh-commit-signature-verification
https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification#ssh-commit-signature-verification

Add a new SSH signing key to your GitHub account

Important

Follow the Linux instructions on the GitHub documentation! By default, the

Windows instructions are shown if you are on Windows.

Follow the official documentation to add a new SSH signing key to your

GitHub account: https://docs.github.com/en/authentication/connecting-to-

github-with-ssh/adding-a-new-ssh-key-to-your-github-account.

Tip

You can use the same public SSH key as the one used to authenticate

yourself.

Just add the SSH key as a signing key.

Tell Git to sign commits with SSH

Important

Follow the Linux instructions on the GitHub documentation! By default, the

Windows instructions are shown if you are on Windows.

Follow the official documentation to tell Git about your SSH key: https://

docs.github.com/en/authentication/managing-commit-signature-

verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-

key.

Enable commit signing in your Git configuration

Git can sign commits on demand or automatically. It is more convenient to

sign commits automatically.

You can enable signing commits automatically by setting the commit.gpgSign

configuration to true (source).

Enable commit signing

git config --global commit.gpgSign true

27 Practical content

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits

Create your own profile README

Let's see how Git works in practice by creating you own profile README on

GitHub.

This will allow you to create your first repository and to learn how to use Git

and GitHub when working on your own projects.

The GitHub profile README is a special repository that will be used to set

your GitHub profile. It is a great way to introduce yourself and to show your

interests.

An example of a profile README is shown in the following screenshot:

28 Practical content

Create a new repository

Follow the official documentation to create a new repository for your profile

README: https://docs.github.com/en/account-and-profile/setting-up-and-

managing-your-github-profile/customizing-your-profile/managing-your-

profile-readme.

An example of a new repository creation is shown in the following

screenshot:

Once you have created your repository though the GitHub interface, you

should notice it contains a few files. Your repository should be different

from the one shown in the screenshot above.

However, as your repository was initialized with a README file, it already

contains a commit. You can see the commit history by clicking on the

"Commits" link in the repository menu.

29 Practical content

https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/managing-your-profile-readme
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/managing-your-profile-readme
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/managing-your-profile-readme

You can also see the commit hash (20f8741) and the author of the commit

(ludelafo), as shown in the following screenshot:

If you click on the commit hash, you will see the details of the commit with

all the changes made in the commit.

On the above screenshot, you can see that the commit has the

badge.

If you have signed your commits, you will see the same badge on your

commits. It means that the commit was correctly signed by you.

Clone the repository locally

Clone your repository locally.

VerifiedVerified

Clone the repository using SSH

git clone YOUR_GITHUB_PROFILE_README_SSH_URL

30 Practical content

Using the terminal, navigate to the directory of the repository.

View the list of branches in the repository.

The output should be similar to this:

The * indicates the current branch. The main branch is the default branch.

The remotes/origin/HEAD -> origin/main and remotes/origin/main are remote

branches. The origin is the name of the remote repository.

Display the commit history of the repository.

The output should be similar to this:

To quit the log, press q.

The commit hash is 20f87413aef2fe9ef296767e6db839b722b83532. The commit was

made by Ludovic Delafontaine on Tue Jul 23 17:28:45 2024 +0200.

At the moment, the 20f87413 commit is the HEAD of the main branch, it

means that it is the last commit of the main branch.

Navigate to the repository directory

cd YOUR_REPOSITORY_NAME

View the list of all branches

git branch -a

* main

 remotes/origin/HEAD -> origin/main

 remotes/origin/main

View the commit history

git log

commit 20f87413aef2fe9ef296767e6db839b722b83532 (HEAD -> main, origin/main, origin/

HEAD)

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Jul 23 17:28:45 2024 +0200

 Initial commit

31 Practical content

Fill your profile

Fill the README.md file with the content you want to show on your profile

using Markdown using your favorite text editor.

Note

Exceptionally, you can edit the README.md file directly through the Windows

File Explorer by accessing the WSL filesystem. If you have cloned the

repository without paying attention of the current directory you were in, you

can find it in the /home/<user> directory.

Feel free to be creative! You can add images, links, tables, etc.

Missing inspiration? There are plenty of generators to help you create your

profile README!

Commit your changes

Check the changes made to the README.md file.

The output should be similar to this:

Check the differences between the working directory and the staging area.

The output should be similar to this:

Check the changes made to the current branch

git status

On branch main

Your branch is up to date with 'origin/main'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

View the differences between the working directory and the staging area

git diff README.md

32 Practical content

The + indicates the new line added to the README.md file.

The - indicates the line removed from the README.md file.

Add the README.md file to the staging area.:

Check the staging area.

The output should be similar to this:

If multiple files were modified, you would only see the files that were added

to the staging area in the list of changes to be committed.

Commit the changes with an appropriate message.

Tip

There is not a clear convention on how to write commit messages. The most

important thing is to be consistent. We have found using an infinitive verb

followed by a short description of the changes to be a good practice.

diff --git a/README.md b/README.md

index 7c46677..76e0528 100644

--- a/README.md

+++ b/README.md

@@ -1,2 +1,3 @@

-# new-repository-demo

-A repository to demonstrate the creation of a new repository.

+# How to create a new repository - demonstration

+

+A new line to my README file!

Add the staged files to the staging area

git add README.md

Check the staging area

git status

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: README.md

33 Practical content

Check the log to see the new commit.

The output should be similar to this:

You can notice that the new commit 2ea9f1c4 is the HEAD of the local main

branch.

The origin/main and origin/HEAD are still pointing to the 20f87413 commit as

their HEAD.

Push your changes

Push the changes to the repository:

Note

You might see sometimes the following command git push origin main. This is

just a more explicit way to push the changes to the main branch of the origin

remote. origin is the default name of the remote when cloning a repository.

The output should be similar to this:

Commit the changes

git commit -m "Update profile README"

View the commit history

git log

commit 2ea9f1c4d5ef42ee3cf1b0d3849a0445ad8d2683 (HEAD -> main)

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Jul 23 18:33:12 2024 +0200

 Update profile README

commit 20f87413aef2fe9ef296767e6db839b722b83532 (origin/main, origin/HEAD)

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Jul 23 17:28:45 2024 +0200

 Initial commit

Push the changes to the repository

git push

34 Practical content

The output shows that the changes were pushed to the main branch of the

remote repository.

Check the results

Reload your GitHub profile and check the results. You should see your

profile README!

Check the log to see the history.

The output should be similar to this:

The 2ea9f1c4 commit is now the HEAD of all branches.

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 16 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 581 bytes | 581.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)

To github.com:heig-vd-dai-course/new-repository-demo.git

 20f8741..2ea9f1c main -> main

View the commit history

git log

commit 2ea9f1c4d5ef42ee3cf1b0d3849a0445ad8d2683 (HEAD -> main, origin/main, origin/

HEAD)

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Jul 23 18:33:12 2024 +0200

 Update profile README

commit 20f87413aef2fe9ef296767e6db839b722b83532

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Jul 23 17:28:45 2024 +0200

 Initial commit

35 Practical content

Share your profile in GitHub Discussions

Share your profile in the GitHub Discussions of this organization: https://

github.com/orgs/heig-vd-dai-course/discussions.

Create a new discussion with the following information:

Title: DAI 2024-2025 - Check out my GitHub profile! - First name Last

name

Category: Show and tell

Description: The link to your GitHub profile README!

This will notify us that you have completed this section and we will check

your profile README!

Summary

In this section, you have learned how to create a repository, clone it locally,

make changes, commit them and push them to the repository.

You have also learned how to share your profile README in the GitHub

Discussions.

Feel free to update your profile README as you learn new things!

Feel also free to open any GitHub Discussions to ask questions or to share

interesting content!

The GitHub Discussions are a great way to interact with your peers and to

learn new things. This is where official announcements will be made. You

should receive notifications when a new discussion is created and you are

mentioned.

Add yourself to the list of students in the GitHub

organization

In this section, you will add yourself to the list of students in the GitHub

organization README using a workflow we have named the Issue, Fork and

Pull request (PR) workflow. This will allow you to contribute to other

projects in the future.

•

•

•

36 Practical content

https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions

Create a new issue

Create a new issue in the https://github.com/heig-vd-dai-course/.github

repository describing what you want to do:

Title: Add myself (First name Last name) to the list of students

Description: I would like to add myself to the list of students in the

GitHub organization README.

Tip

While totally optional, it is good practice to create an issue before starting

to work on any new feature. It allows to discuss the feature with the

maintainers of the project. Maybe the maintainers have some ideas on how

to implement the feature or maybe the feature is already planned and you

can help them! This avoids to waste time on a feature that will not be

implemented or two people working on the same feature at the same time.

Fork the repository

The main repository is protected and you will not be able to push changes

directly to it. You will need to fork the repository and open a pull request.

Fork the repository using the Fork button in the top right corner of the

repository page as shown in the following screenshot:

•

•

37 Practical content

https://github.com/heig-vd-dai-course/.github

You will be asked to choose where to fork the repository. Choose your own

account. You can change the name of the repository if you want.

Clone the repository locally

Forking the repository will create a copy of the repository in your own

account.

Clone the repository locally and open it in your favorite text editor.

Create a new branch

Create a new branch to add yourself to the list of students:

Tip

As for the commit messages, there is not a clear convention on how to

name branches. We have found using an infinitive verb followed by a short

description of the changes to be a good practice.

38 Practical content

Display the branches to see the new branch:

Add yourself to the list

Add yourself to the list of students in the profile/README.md file. Please add

yourself in alphabetical order (by last name) as mentioned in the HTML

comment in the README file in the class you belong to.

Important

As little as it seems, it is important to respect the alphabetical order. It

helps us (the teaching staff) searching for someone when grading your work

and answering your questions. Thanks!

Do not remove the HTML comments in the README file.

Note

If you are on WSL, you can exceptionally edit the README.md file directly

through the Windows File Explorer by accessing the WSL filesystem. If you

have cloned the repository without paying attention of the current directory

you were in, you should find it in the /home/<username> directory.

Commit your changes

Check the staging area and the differences between the working directory

and the staging area as seen in the previous section.

If you are happy with your changes, commit your changes:

git checkout -b add-myself-to-the-list-of-students

View the list of all branches

git branch -a

- First name Last name [@username](https://github.com/<username>)

Add the staged files to the staging area

git add profile/README.md

Commit the changes

git commit -m "Add myself to the list of students"

39 Practical content

Intentionally create a conflict

In the next section, you will intentionally create a conflict to learn how to

resolve it.

Checkout to a new branch and change the title of the .profile/README.md file

to # This change is made on the branch 'this-branch-will-create-a-conflict' and

commit:

Checkout to the branch you created earlier and try to merge the branch you

just created:

Tip

You might notice you did not use the -b argument when checking out to the

branch you created earlier. This is because the branch already exists. If you

try to checkout to a branch that does not exist, you will need to use the -b

argument.

Change the title of the .profile/README.md file to # This change is made on the

branch 'add-myself-to-the-list-of-students' and commit the changes:

Merge the branch you just created:

Checkout to a new branch

git checkout -b this-branch-will-create-a-conflict

Make your changes

Add the staged files to the staging area

git add profile/README.md

Commit the changes

git commit -m "This change was done on branch 'this-branch-will-create-a-conflict'"

Checkout to the branch you created earlier

git checkout add-myself-to-the-list-of-students

Add the staged files to the staging area

git add profile/README.md

Commit the changes

git commit -m "This change was done on branch 'add-myself-to-the-list-of-students'"

40 Practical content

Note

git merge will merge the changes from the branch you are merging into the

current branch. In this case, you are merging the changes from the change-

title-of-readme-file branch into the add-myself-to-the-list-of-students.

You should see the following error:

Resolve the conflict

Git was not able to merge the changes automatically. This is called a merge

conflict. This happens when two or more people make changes to the same

file at the same time.

Open the file in your favorite IDE and you should see the conflict.

The HEAD part is the content of the current branch. The this-branch-will-create-

a-conflict part is the content of the branch you are trying to merge.

Replace the whole content back to its original state:

Once you are done, add the file to the staging area and commit the

changes:

Congratulations! You have resolved your first merge conflict!

Merge the branch you just created

git merge this-branch-will-create-a-conflict

Auto-merging profile/README.md

CONFLICT (content): Merge conflict in profile/README.md

Automatic merge failed; fix conflicts and then commit the result.

HEIG-VD DAI Course

Add the staged files to the staging area

git add profile/README.md

Commit the changes

git commit -m "Resolve the merge conflict"

41 Practical content

Revert the commits

As this conflict was intentional, you can revert the commits to get back to

the original state of the repository before the intentional conflict.

Check the log to see the history of the repository:

You should see the commits you made:

The commit hashes are unique identifiers for each commit. They will, of

course, be different on your screen. They are used to identify a commit.

They are also used to create branches and tags.

Check the log

git log

commit 27fabbdb3b808bf3b32d25e72a388dc60c5bca24 (HEAD -> add-myself-to-the-list-of-

students)

Merge: 9061c5f eca5084

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Sep 12 16:26:38 2023 +0200

 Resolve the merge conflict

commit 9061c5f37e41ea3664e1be4541af66b50444c64b

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Sep 12 16:23:57 2023 +0200

 This change was done on branch 'add-myself-to-the-list-of-students'

commit eca508463561e2f426eabec56a0208635c0b938c (this-branch-will-create-a-conflict)

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Tue Sep 12 16:21:14 2023 +0200

 This change was done on branch 'this-branch-will-create-a-conflict'

commit 7cfbc3c4d50e353e66cb235b06bf4376e69b3ddb (origin/main, main)

Author: Ludovic Delafontaine <ludovic.delafontaine@gmail.com>

Date: Mon Sep 4 14:39:51 2023 +0200

 Add myself to the list of students

42 Practical content

As this conflict was intentional, you can revert the commits to get back to

the original state of the repository before the intentional conflict:

Warning

A git reset --hard will delete all the changes made since the commit you reset

to. Be careful when using it! This is OK in this case as the conflict was

intentional and no commits were pushed to the remote repository. If

commits were pushed to the remote repository, you would need to use git

revert instead.

Get latest changes from the upstream main branch

As maintainers might have added new students to the list of students, you

will need to get the latest changes from the upstream main branch.

Follow the official documentation to add the upstream remote: https://

docs.github.com/en/pull-requests/collaborating-with-pull-requests/

working-with-forks/configuring-a-remote-repository-for-a-fork.

Then, pull the changes from the upstream main branch:

Checkout to the local main branch:

Pull the changes from the upstream main branch:

Checkout to the branch you created earlier:

Merge the local main branch into the branch you created earlier:

Revert the commits

git reset --hard 7cfbc3c4d50e353e66cb235b06bf4376e69b3ddb

Check if changes were made to the upstream branch

git fetch upstream

Checkout to the main branch

git checkout main

Pull the changes from the upstream main branch

git merge upstream/main

Checkout to the branch you created earlier

git checkout add-myself-to-the-list-of-students

43 Practical content

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/configuring-a-remote-repository-for-a-fork
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/configuring-a-remote-repository-for-a-fork
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/configuring-a-remote-repository-for-a-fork

More information in the official documentation: https://docs.github.com/

en/pull-requests/collaborating-with-pull-requests/working-with-forks/

syncing-a-fork#syncing-a-fork-branch-from-the-command-line.

Push your changes

Push your changes to the repository. This will create a new branch in your

remote repository.

Create a pull request

Create a pull request by clicking on the Contribute button in your repository

page.

Tip

If the notification does not appear, you can create a pull request by clicking

on the Pull requests tab and then on the New pull request button. Select

the branches you want to merge and click on the Create pull request

button.

The title of the pull request should be filled automatically with the message

of the last commit. We consider this to be a bad practice. Instead,rename

the pull request to something meaningful. The title of the issue you created

earlier is a good candidate as it describes what you want to do.

Important

You must allow maintainers to update the pull request. This is needed to

resolve conflicts. If you do not allow maintainers to update the pull request,

you will need to resolve the conflicts yourself.

Check the Allow edits by maintainers checkbox.

Fill the description with #<number of the issue you created earlier>, Fixes #<number

of the issue you created earlier>, or Closes #<number of the issue you created earlier>.

This will automatically link the issue to the pull request.

Merge the main branch into the branch you created earlier

git merge main

Push the changes to the repository

git push --set-upstream origin add-myself-to-the-list-of-students

44 Practical content

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork#syncing-a-fork-branch-from-the-command-line
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork#syncing-a-fork-branch-from-the-command-line
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork#syncing-a-fork-branch-from-the-command-line

Once the description is filled, click on the Create pull request button.

You might want to continue to work on the pull request. You can do so by

pushing new commits to the branch. You can also add a comment to the

pull request if you want to discuss something with the maintainers.

Tip

If your pull request is not ready yet, you can mark it as a draft by clicking on

the Mark as draft button. This will inform the maintainers that the pull

request is not ready yet and that they should not review it yet. When you

are ready, you can mark it as ready by clicking on the Ready for review

button.

Once you are ready, mark the pull request as ready.

Add a comment with the usernames of the Teaching staff team to let them

know that your pull request is ready for review. Add a link to the issue as

well if you did not link it in the description.

Wait for review

The maintainers will review your pull request and will ask for changes if

needed.

Important

The review can take a few day. Please be patient. Come back to this section

once the review is done. If another chapter is available, you can start it.

They will then add you as a member of the GitHub organization and will add

you to the [@students](https://github.com/orgs/heig-vd-dai-course/teams/students)

team.

Note

You might not be able to see the list of students mentioned in the previous

section. You will be able to see it once you have joined the GitHub

organization as well as all other teams: https://github.com/orgs/heig-vd-

dai-course/teams.

45 Practical content

https://github.com/heig-vd-dai-course#teaching-staff
https://github.com/orgs/heig-vd-dai-course/teams
https://github.com/orgs/heig-vd-dai-course/teams

Make changes if needed

The maintainers might ask for changes. If they do, you will need to make

the changes locally, commit them and push them to the repository.

Tip

If you need to sign all the previous commits you did, you can use git log and

the following command to sign all the commits after the commit hash

mentioned (source):

Accept the invitation

Once the pull request is approved, you will receive an invitation to join the

GitHub organization. Accept the invitation so you are part of the course and

we can notify all the students at the same time using GitHub Discussions.

Important

You must accept the invitation to be part of the GitHub organization. If you

do not accept the invitation, you will not receive notifications from the

teaching staff when announcements are made.

Check the results

Once the pull request is approved and merged, you can check the results

on the organization README. You should see your name in the list of

students! You can now fetch the changes to your local repository.

Change the membership visibility of the organization (optional)

If you want, you can change the visibility of your membership in the GitHub

organization. You can choose between public and private.

You can do so by going in the settings of the organization and then in the

Membership tab.

Sign all commits after the commit hash

git rebase --exec "git commit --amend --no-edit -n -S" -i <hash of the previous commit>

Force push the changes

git push --force

46 Practical content

https://stackoverflow.com/a/54987693

This will allow other users to see your membership in the organization. They

will be able to see your username and the date you joined the organization.

This is totally optional. You can keep your membership private if you want.

Fetch the changes

Fetch the changes to your local repository:

Fetching will download the changes from the remote repository without the

files.

It will display if new branches have been created or if new commits have

been added to existing branches.

Checkout to the main branch

Checkout to the main branch:

Pull the changes

Pull the upstream changes to your local repository:

Now files will be downloaded to your local repository. Maybe some of your

peers have added themselves to the list of students!

You are now ready to start the cycle again!

You can optionally delete the branch you created earlier:

This will delete the branch locally.

Pull the changes

git fetch

Checkout to the main branch

git checkout main

Pull the changes

git pull upstream main

Delete the branch

git branch -d add-myself-to-the-list-of-students

47 Practical content

Delete the fork (optional)

You can delete the fork you created earlier if you want after the pull

request has been merged to the main repository.

You can go in the settings of your repository and General > Danger zone.

This will not delete the repository in the organization nor the changes you

made.

Summary

In this section, you have learned how to open an issue, create an issue, fork

a repository, clone it locally, create a new branch, make changes, commit

them, push them to the repository, create a pull request, wait for review,

make changes if needed and check the results. You have also learned how

to fetch and pull changes from a remote repository.

There are many ways to contribute to a project. This is just one of them that

we find easy to understand and to use.

Feel free to contribute to other projects using this workflow!

You are now ready to work professionally with Git and GitHub!

Go further

This is an optional section. Feel free to skip it if you do not have time.

Go in the GitHub Discussions, check the others profiles and follow them!

You will be able to see their activity on your GitHub feed (what they star,

what they do, etc.)!

Can you think of an open source project you like? Give them a star on

GitHub!

•

•

48 Practical content

Conclusion

What did you do and learn?

In this chapter, you have installed and configured Git properly. You have

also created your own GitHub account and profile README for your future

social profile as a computer scientist engineer.

Finally, you have added yourself to the list of students in the GitHub

organization using the issue, fork and pull request workflow, enabling you

to contribute to other projects in the future.

Git is a valuable tool for collaborative work but we only scratched the

surface. Refer to the resources for more useful content!

Using Markdown, you can now write valuable documentation, as any code

you write is meant to be used by other people. Even if you are the only one

working on a project, you will need to understand your own code in a few

months or years.

Other people will want to know that is the purpose of your project and how

to use it. A good documentation is a good publicity for your project.

Test your knowledge

At this point, you should be able to answer the following questions:

How does Git work?

What is the difference between Git and GitHub?

How is Markdown different from Word?

What is a repository? What is a clone?

What is a tag? How is it different from a commit?

Describe a typical Git workflow.

•

•

•

•

•

•

49 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

50 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/2

What will you do next?

In the next chapter, you will learn the following topics:

Java: why is Java a popular programming language?

IntelliJ IDEA: tips and tricks for a better (collaborative) experience

Maven: Java project structure, dependencies and build tool

•

•

•

51 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it!

•

52 Additional resources

Sources

Main illustration by Roman Synkevych on Unsplash•

53 Sources

https://unsplash.com/@synkevych
https://unsplash.com/photos/wX2L8L-fGeA

	Git, GitHub and Markdown - Course material
	Table of contents
	Introduction to your first chapter
	Objectives
	Git
	Architecture
	Commits, hashes and tags
	Branches
	Merging branches
	Conflicts
	Ignore files
	Summary
	Cheat sheet
	Alternatives
	Resources

	GitHub
	Social platform
	Free features and PRO features
	Users and organizations
	Issues, pull requests and forks
	Summary
	Alternatives
	Resources

	Markdown
	Markdown and output formats
	Syntax
	Headings
	Text formatting
	Code blocks
	Unordered lists
	Ordered lists
	Links
	Images
	Tables
	HTML
	"Hacky" tips

	Specifications
	Summary
	Alternatives
	Resources

	Practical content
	Create and configure your GitHub account
	Create a GitHub account
	Enable two-factor authentication (optional, but highly recommended)
	Enable your PRO account

	Install and configure Git
	Install Git
	Check the installation
	Configure Git

	Enable SSH authentication
	Generate a SSH key
	Add the public SSH key to your GitHub account
	Test the configuration

	Sign commits with SSH
	Add a new SSH signing key to your GitHub account
	Tell Git to sign commits with SSH
	Enable commit signing in your Git configuration

	Create your own profile README
	Create a new repository
	Clone the repository locally
	Fill your profile
	Commit your changes
	Push your changes
	Check the results
	Share your profile in GitHub Discussions
	Summary

	Add yourself to the list of students in the GitHub organization
	Create a new issue
	Fork the repository
	Clone the repository locally
	Create a new branch
	Add yourself to the list
	Commit your changes
	Intentionally create a conflict
	Resolve the conflict
	Revert the commits
	Get latest changes from the upstream main branch
	Push your changes
	Create a pull request
	Wait for review
	Make changes if needed
	Accept the invitation
	Check the results
	Change the membership visibility of the organization (optional)
	Fetch the changes
	Checkout to the main branch
	Pull the changes
	Delete the fork (optional)
	Summary

	Go further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Sources

