
Java, IntelliJ IDEA and
Maven - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/04-java-intellij-idea-and-maven/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/04-java-intellij-idea-and-maven/04-java-intellij-idea-and-maven-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md


Table of contents

Table of contents

Objectives

Java

Java virtual machine

JVM versions

Java versions and version managers

Compiling and running Java programs

Summary

Alternatives

Resources

IntelliJ IDEA

Community Edition and Ultimate Edition

JetBrains Toolbox App

Configuration files and Git

Summary

Alternatives

Resources

Maven

Maven project structure

pom.xml file

Maven lifecycle

Maven Repository

Maven wrapper

Summary

Alternatives

Resources

Cheat sheet

Practical content

Install SDKMAN!

Install Java

Install Maven

Install and configure IntelliJ IDEA

Create and run a new Maven project with IntelliJ IDEA

Go further

• 

• 

• 

 

 

 

 

 

 

 

• 

 

 

 

 

 

 

• 

 

 

 

 

 

 

 

 

 

• 

 

 

 

 

 

 

2 Table of contents



Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Solution

Sources

• 

 

 

• 

• 

• 

• 

• 

3 Table of contents



Objectives

This chapter will help you understand how Java can run on all platforms,

how to install and switch between different versions of Java, how to use

IntelliJ IDEA to develop Java applications, how to use Maven to manage

dependencies and build Java applications.

These skills are essential to develop Java applications in a professional

environment to share them with other developers.

Let's get started!

4 Objectives



Java

Java is a general-purpose, class-based, object-oriented programming

language. It is intended to let programmers write once, run anywhere

(WORA), meaning that compiled Java code can run on all platforms

that support Java, thanks to the Java virtual machine (JVM).

https://www.java.com/

Java was created by James Gosling at Sun Microsystems (now part of Oracle

Corporation) and released in 1995.

Java is a very popular programming language, especially for client-server

web applications.

Java virtual machine

Java is a compiled language, meaning that the source code is compiled to

bytecode, which is then executed by a Java virtual machine (JVM).

Java is intended to be portable, meaning that compiled Java code can run

on all platforms that support Java, without the need for recompilation,

thanks to the JVM.

JVM versions

Many implementations of the JVM exist, targeting different hardware and

software environments and/or specific optimizations for a given platform

and/or use-case.

In order to install Java on your computer, you may find the JDK (Java

Development Kit) or the JRE (Java Runtime Environment) packages.

If you want to develop Java applications, you will need the JDK. If you want

to run Java applications, you will need the JRE.

5 Java

https://www.java.com/


Java versions and version managers

Java has various versions, each with its own set of features and

improvements. The latest Long term support (LTS) version is Java 21.

As projects can use different versions of Java, it is common to use a version

manager such as SDKMAN! or asdf.

Version managers allow you to install and switch between different

versions of Java.

While working on a project, you should use the same version of Java as the

other developers to ensure that the project compiles and runs correctly.

You can develop Java applications using a text editor and the command

line, but it is more convenient to use an Integrated Development

Environment (IDE).

Compiling and running Java programs

A (simple) Java application can be compiled using the javac command:

The resulting bytecode can be executed using the java command:

Output:

A Java application can be packaged into a JAR (Java ARchive) file, which is a 

ZIP file containing the compiled bytecode and other resources.

A JAR file can be executed using the java command:

# Compile the source code

javac HelloWorld.java

# Run the compiled bytecode

java HelloWorld

Hello DAI students!

# Run the JAR file

java -Xmx1024M -Xms1024M -jar minecraft_server.1.21.jar nogui

6 Java

https://sdkman.io/
https://asdf-vm.com/


In this example, the -Xmx1024M and -Xms1024M options define the maximum

and initial memory allocation pool for a Java virtual machine (JVM),

respectively.

These options can tweak the performance of the JVM, depending on the

application.

As many Java applications depend on external libraries, it is common to use

a dependency manager such as Maven or Gradle.

Summary

Java is a general-purpose, class-based, object-oriented programming

language.

Java is compiled to bytecode, which is then executed by a Java virtual

machine (JVM).

Java is intended to be portable, thanks to the JVM.

Java has various versions, each with its own set of features and

improvements.

Versions managers allow you to install and switch between different

versions of Java.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Kotlin

Scala

Groovy

Missing item in the list? Feel free to open a pull request to add it! 

Resources

Resources are here to help you. They are not mandatory to read.

asdf - An alternative to SDKMAN!.

Missing item in the list? Feel free to open a pull request to add it! 

• 

• 

• 

• 

• 

• 

• 

• 

• 

7 Java

https://maven.apache.org/
https://gradle.org/
https://kotlinlang.org/
https://www.scala-lang.org/
https://groovy-lang.org/
https://asdf-vm.com/


IntelliJ IDEA

IntelliJ IDEA is an integrated development environment (IDE) written

in Java for developing computer software. It is developed by JetBrains,

and is available as an Apache 2 Licensed community edition, and in a

proprietary commercial edition.

https://www.jetbrains.com/idea/

IntelliJ IDEA is a very popular IDE for Java development, but it also supports

many other programming languages.

Community Edition and Ultimate Edition

IntelliJ IDEA is available in two editions: the Community Edition (free and

open-source) and the Ultimate Edition (proprietary).

You are eligible for a free student license for the Ultimate Edition, which

you can obtain by following the instructions on the JetBrains Student

License page.

IntelliJ IDEA is available for Windows, macOS and Linux. Feel free to use

another IDE if you prefer, but we have great experience with IntelliJ IDEA.

JetBrains Toolbox App

The JetBrains Toolbox App is a desktop application that allows you to 

install and manage multiple JetBrains IDEs.

It is a convenient way to install and update IntelliJ IDEA and other JetBrains

IDEs in a single place.

Configuration files and Git

When creating a new project, IntelliJ IDEA will create a .idea directory

containing the project configuration files.

8 IntelliJ IDEA

https://www.jetbrains.com/idea/
https://www.jetbrains.com/community/education/#students
https://www.jetbrains.com/community/education/#students


Some of these files must be ignored by Git, as they contain local

configuration that is specific to your computer.

Other files must be committed to Git, as they contain project configuration

that is shared between all developers.

This allows you to share the project configuration with other developers, so

that they can open the project in their instance of IntelliJ IDEA and have the

same configuration as you and ensure that the project compiles and runs

correctly.

Summary

IntelliJ IDEA is an integrated development environment (IDE) written in

Java for developing computer software.

IntelliJ IDEA is available in two editions: the Community Edition (free and

open-source) and the Ultimate Edition (proprietary).

You are eligible for a free student license for the Ultimate Edition.

When creating a new project, IntelliJ IDEA will create a .idea directory

containing the project configuration files.

Some of these files must be ignored by Git, as they contain local

configuration that is specific to your computer.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Visual Studio Code with the Java Extension Pack

Eclipse if you really want to use it

NetBeans if you really want to use it

Missing item in the list? Feel free to open a pull request to add it! 

Resources

Resources are here to help you. They are not mandatory to read.

None for now

Missing item in the list? Feel free to open a pull request to add it! 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9 IntelliJ IDEA

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://www.eclipse.org/ide/
https://netbeans.apache.org/


Maven

Apache Maven is a software project management and comprehension

tool. Based on the concept of a project object model (POM), Maven

can manage a project's build, reporting and documentation from a

central piece of information.

https://maven.apache.org/

Maven is a dependency manager for Java projects. It is used to manage

external libraries (also called dependencies) used by your application.

Maven is a command-line tool. It can be used using the mvn command.

Maven is also a build automation tool. It is used to compile your

application, run your unit tests, package your application, etc.

Maven project structure

Maven defines a standard directory structure for Java projects, so that all

developers can find the source code, unit tests, etc. in the same place. It 

standardizes the build process of your application, so that all developers

can build the project in the same way.

When creating a new project in IntelliJ IDEA, you can choose between

different project templates.

In this course, you will use the Maven project template.

IntelliJ IDEA will automatically create a Maven project structure for you, with

the following files:

pom.xml: the Project Object Model (POM) file, which is the core of a

Maven project.

src/main/java: the source code of your application.

src/test/java: the unit tests of your application.

• 

• 

• 

10 Maven

https://maven.apache.org/


pom.xml file

The pom.xml file contains the configuration of your Maven project.

It also contains the build configuration of your application, which defines

how your application is compiled, tested, packaged, etc.

It contains the dependencies of your application, which are external

libraries used by your application.

The pom.xml file is shared between all developers, so that they can compile

and run the application in the same way.

The standard pom.xml file contains the following sections (among others):

groupId: the name of the organization that created the project. It defines

the namespace of the project.

artifactId: the name of the project.

version: the version of the project.

packaging: the packaging type of the project.

name and description: the name and description of the project.

dependencies: the dependencies of the project.

The artifactId, version and packaging sets the name of the JAR file.

Maven lifecycle

Maven defines a standard build process for Java projects, called the Maven

lifecycle.

The Maven lifecycle is composed of phases. Each phase is composed of 

plugin goals.

For example, the compile phase is composed of the compiler:compile plugin

goal and the package phase is composed of the jar:jar and 

plugin:addPluginArtifactMetadata plugin goal, which will generate a JAR file.

Maven Repository

The Maven Repository is a public repository of Java libraries. It contains

many libraries that you can use in your projects.

• 

• 

• 

• 

• 

• 

11 Maven

https://mvnrepository.com/


You can search for a library and copy the dependency declaration to your 

pom.xml file.

For example, the following dependency declaration adds the picocli library

to your project:

Maven wrapper

Maven offers what is called the Maven wrapper. This wrapper is a script (a

shell script on Linux and macOS and a Batch script on Windows) that will

download and run Maven for you, even if you do not have Maven installed

on your computer.

These scripts can be committed to any Git repository, shared with your team

and used on any platform without the need to have Maven installed

beforehand. You can then use the wrapper script to download and run

Maven.

The Maven wrapper defines the version of Maven to use, so that all

developers use the same version of Maven.

The Maven wrapper and its configuration file are committed to Git but the

Maven executable file is ignored by Git.

A new developer can then run the Maven wrapper to download and execute

Maven, ensuring that all developers use the same version of Maven.

This a considered good practice to ensure that all developers use the same

version of Maven and that the project can be built and run correctly.

Summary

Maven is a software project management and comprehension tool.

Maven is a dependency manager for Java projects.

Maven is a build automation tool for Java projects.

<!-- https://mvnrepository.com/artifact/info.picocli/picocli -->

<dependency>

    <groupId>info.picocli</groupId>

    <artifactId>picocli</artifactId>

    <version>4.7.6</version>

</dependency>

• 

• 

• 

12 Maven

https://mvnrepository.com/artifact/info.picocli/picocli/4.7.6


Maven defines a standard directory structure for Java projects.

Maven defines a standard build process for Java projects.

The pom.xml file contains the configuration of your Maven project.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Gradle

Ant

Make

Bazel

Missing item in the list? Feel free to open a pull request to add it! 

Resources

Resources are here to help you. They are not mandatory to read.

Introduction to the Build Lifecycle

Maven Build Lifecycle, Phases, and Goals

Missing item in the list? Feel free to open a pull request to add it! 

Cheat sheet

Multiple phases can be executed in a single command:

• 

• 

• 

• 

• 

• 

• 

• 

• 

# Download the dependencies and their transitive dependencies

mvn dependency:go-offline

# Delete the compiled classes

mvn clean

# Compile the source code

mvn compile

# Package the application

mvn package

13 Maven

https://gradle.org/
https://ant.apache.org/
https://www.gnu.org/software/make/
https://bazel.build/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://www.digitalocean.com/community/tutorials/maven-build-lifecycle-phases-goals


# Execute all the phases described above

mvn dependency:go-offline clean compile package

14 Maven



Practical content

Note

If you are on Windows, you must follow the extra steps of the Set up a

Windows development environment guide to correctly configure the

following tools with the Windows Subsystem for Linux (WSL).

Install SDKMAN!

In this section, you will install SDKMAN! to manage different versions of

Java.

Install SDKMAN!

Go to the official website and follow the instructions on how to install

SDKMAN! on your system: https://sdkman.io/.

Important

You might need to install the missing packages for SDKMAN! to work

correctly.

Use apt to install them by running the following command in the terminal:

Check the installation

Open a terminal and type sdk version.

The output should be similar to this:

# Install the missing packages for SDKMAN!

sudo apt install <name of the missing package>

SDKMAN!

script: 5.18.2

core: 0.4.6

15 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://sdkman.io/
https://sdkman.io/


Install Java

In this section, you will install the latest version available as well as the

latest Long term support (LTS) version of Java and switch between them

using SDKMAN!.

Install the latest version of Java

Using SDKMAN!, it is very easy to install the latest version of Java.

Start by listing the available versions of Java:

The output should be similar to this:

# List all available versions of Java

sdk list java

================================================================================

Available Java Versions for Linux 64bit

================================================================================

 Vendor        | Use | Version      | Dist    | Status     | Identifier

--------------------------------------------------------------------------------

...

 GraalVM Oracle|     | 24.ea.3      | graal   |            | 24.ea.3-graal

               |     | 24.ea.1      | graal   |            | 24.ea.1-graal

               |     | 23.ea.17     | graal   |            | 23.ea.17-graal

               |     | 23.ea.16     | graal   |            | 23.ea.16-graal

               |     | 22.0.2       | graal   |            | 22.0.2-graal

               |     | 22.0.1       | graal   |            | 22.0.1-graal

               |     | 21.0.4       | graal   |            | 21.0.4-graal

               |     | 21.0.3       | graal   |            | 21.0.3-graal

               |     | 17.0.12      | graal   |            | 17.0.12-graal

               |     | 17.0.11      | graal   |            | 17.0.11-graal

...

 Oracle        |     | 22.0.2       | oracle  |            | 22.0.2-oracle

               |     | 22.0.1       | oracle  |            | 22.0.1-oracle

               |     | 21.0.4       | oracle  |            | 21.0.4-oracle

16 Practical content



As mentioned in the theoretical part, many Java JVMs are available, used to

target different hardware and software environments and/or specific

optimizations for a given platform and/or use-case.

Tip

How to know which version of Java to use? Use the website Which Version of

JDK Should I Use?. It is a very useful website to help you choose the right

version of Java for your project.

To install the latest version of Java Temurin, use the following command:

               |     | 21.0.3       | oracle  |            | 21.0.3-oracle

               |     | 17.0.12      | oracle  |            | 17.0.12-oracle

               |     | 17.0.11      | oracle  |            | 17.0.11-oracle

...

 Temurin       |     | 22.0.2       | tem     |            | 22.0.2-tem

               |     | 22.0.1       | tem     |            | 22.0.1-tem

               |     | 21.0.4       | tem     |            | 21.0.4-tem

               |     | 21.0.3       | tem     |            | 21.0.3-tem

               |     | 17.0.12      | tem     |            | 17.0.12-tem

               |     | 17.0.11      | tem     |            | 17.0.11-tem

               |     | 11.0.24      | tem     |            | 11.0.24-tem

               |     | 11.0.23      | tem     |            | 11.0.23-tem

               |     | 8.0.422      | tem     |            | 8.0.422-tem

               |     | 8.0.412      | tem     |            | 8.0.412-tem

...

================================================================================

Omit Identifier to install default version 21.0.4-tem:

    $ sdk install java

Use TAB completion to discover available versions

    $ sdk install java [TAB]

Or install a specific version by Identifier:

    $ sdk install java 21.0.4-tem

Hit Q to exit this list view

================================================================================

17 Practical content

https://whichjdk.com/
https://whichjdk.com/


In this example, we install the latest version of Java Temurin, which is Java

22.0.2. It might be different (updated) when you follow this course.

Set this version as the default version of Java while installing it.

You can then check the current used version of Java using the following

command:

The output should be similar to this:

Install the latest LTS version of Java

Now, you will install the latest Long term support (LTS) version of Java,

which is the version that is expected to be used for the remaining of this

course.

By default, SDKMAN! will install the latest version of Java Temurin, which is

the Adoptium Eclipse Temurin JVM, a recognized and trusted distribution of

OpenJDK.

To install the latest LTS version of Java Temurin, use the following command:

Set this version as the default version of Java while installing it.

You can then check the current used version of Java using the following

command:

The output should be similar to this:

# Install the latest version of Java Temurin

sdk install java 22.0.2-tem

# Check the current used version of Java

java --version

openjdk 22.0.2 2024-07-16

OpenJDK Runtime Environment Temurin-22.0.2+9 (build 22.0.2+9)

OpenJDK 64-Bit Server VM Temurin-22.0.2+9 (build 22.0.2+9, mixed mode, sharing)

# Install the latest LTS version of Java Temurin

sdk install java

# Check the current used version of Java

java --version

18 Practical content



Switch between Java versions

You can switch between different versions of Java using the following

command:

This will set version 22.0.2 of Java Temurin as the current version of Java in

the current terminal session.

This can be useful to switch to a specific version of Java for a specific

project.

Set the default Java version

You can set the default version of Java using the following command:

This will ensure the latest LTS version of Java Temurin is used by default

when opening a new terminal session.

Install Maven

In this section, you will install Maven. In a future section, you will initialize

the Maven wrapper using Maven itself.

Install Maven

Install Maven using SDKMAN!:

openjdk 21.0.4 2024-07-16 LTS

OpenJDK Runtime Environment Temurin-21.0.4+7 (build 21.0.4+7-LTS)

OpenJDK 64-Bit Server VM Temurin-21.0.4+7 (build 21.0.4+7-LTS, mixed mode, sharing)

# List installed versions of Java

sdk list java

# Switch to a specific version of Java

sdk use java 22.0.2-tem

# Set the default version of Java

sdk default java 21.0.4-tem

# Install Maven

sdk install maven

19 Practical content



Check the installation

Check the installation of Maven using the following command:

The output should be similar to this:

Install and configure IntelliJ IDEA

In this section, you will install and configure IntelliJ IDEA Ultimate Edition.

Enable the IntelliJ student license

Follow the official documentation to enable the IntelliJ student license: 

https://www.jetbrains.com/community/education/#students.

Note

You can use the Community Edition of IntelliJ IDEA if you prefer. We will not

use any feature that is only available in the Ultimate Edition.

You are free to use another IDE if you prefer but the official support for this

course is IntelliJ IDEA (Community or Ultimate Edition).

Download and install IntelliJ Toolbox App

Go to the official website and follow the instructions on how to install

IntelliJ Toolbox App on your system: https://www.jetbrains.com/toolbox/

app.

Enable the student license in IntelliJ Toolbox App

Open IntelliJ Toolbox App and login with your JetBrains account.

# Check the Maven version

mvn --version

Apache Maven 3.9.8 (36645f6c9b5079805ea5009217e36f2cffd34256)

Maven home: /home/ludelafo/.sdkman/candidates/maven/current

Java version: 21.0.4, vendor: Eclipse Adoptium, runtime: /home/ludelafo/.sdkman/

candidates/java/21.0.4-tem

Default locale: en, platform encoding: UTF-8

OS name: "linux", version: "5.15.153.1-microsoft-standard-wsl2", arch: "amd64", family: "unix"

20 Practical content

https://www.jetbrains.com/community/education/#students
https://www.jetbrains.com/toolbox/app
https://www.jetbrains.com/toolbox/app


Install IntelliJ IDEA Ultimate Edition

Note

Reminder: for people on Windows, follow the Set up a Windows

development environment guide to correctly configure IntelliJ IDEA with the

Windows Subsystem for Linux (WSL).

Install IntelliJ IDEA from the Toolbox App and you should be good to go!

Create and run a new Maven project with IntelliJ IDEA

In this section, you will create a new Maven project with IntelliJ IDEA.

Create the IntelliJ IDEA project

Open IntelliJ IDEA and create a new project. Fill the form as shown in the

following screenshot:

Important

21 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/01-introduction-and-course-organization/SET_UP_A_WINDOWS_DEVELOPMENT_ENVIRONMENT.md#install-and-configure-intellij-idea-to-access-wsl


As mentioned in the course material, always use the LTS version of Java. As

you have now multiple versions of Java installed on your machine, always

check the version of Java used when creating a new project and use the LTS

version.

Set the artifact ID and group ID as shown in the screenshot as well.

Run the Java project from IntelliJ IDEA

Open the Main file. Press the "Run" button in the toolbar to run the Maven

project.

The output should be Hello World! in the "Run" tab.

Initialize the Maven wrapper

The Maven wrapper is a good practice to ensure that all developers use the

same version of Maven. This allows new developers to run the Maven

wrapper to download and run Maven, without having to install Maven on

their computer first (and ensuring that they use the same version of

Maven).

In order to use the Maven wrapper, you have to initialize it using Maven.

Open a terminal within IntelliJ IDEA. This will open the path of the current

project. Initialize the Maven wrapper using the following command:

This will create the Maven wrapper files in your project:

The mvnw (Unix/Linux/macOS) and mvnw.cmd (Windows) files are the Maven

wrapper scripts. These files are committed to Git.

# Initialize the Maven wrapper

mvn wrapper:wrapper

.

├── .mvn

│   └── wrapper

│       └── maven-wrapper.properties

├── mvnw

└── mvnw.cmd

22 Practical content



The maven-wrapper.properties file contains the configuration of the Maven

wrapper, including the version to install. This file is committed to Git.

Now, instead of using the Maven version you installed locally, you can use

the Maven wrapper that will download and run Maven for you with a

specific version.

The output should be similar to the previous execution of Maven.

You have to execute these steps only once per project. Once the Maven

wrapper is initialized, you can use it to run Maven, as well as all other

developers of the project.

Update the pom.xml file to generate a JAR file

Maven uses the pom.xml file to define the build process of your application.

Maven has a plugin called maven-jar-plugin that can be used to generate a

JAR file from your application.

Important

Use the latest stable version of the maven-jar-plugin available on the Maven

Repository: https://mvnrepository.com/artifact/org.apache.maven.plugins/

maven-jar-plugin.

Add the following configuration to the pom.xml file:

# Check the Maven version

./mvnw --version

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

  <modelVersion>4.0.0</modelVersion>

  <groupId>ch.heigvd.dai</groupId>

  <artifactId>java-intellij-idea-and-maven</artifactId>

  <version>1.0-SNAPSHOT</version>

  <properties>

<!-- Omitted for brevity -->

  </properties>

23 Practical content

https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-jar-plugin
https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-jar-plugin


Package and run the project from the command line

Download the dependencies and their transitive dependencies using the

following command:

This will download all the dependencies needed by your application.

You can now generate a JAR file using the package command:

Maven will generate a JAR file in the target directory.

Run the JAR file using the java command:

  <build>

    <plugins>
<!-- https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-jar-plugin 

-->

      <plugin>

        <artifactId>maven-jar-plugin</artifactId>

        <version>3.4.2</version>

        <configuration>

          <archive>

            <manifest>

<!-- Update the path to the main class if needed -->

              <mainClass>ch.heigvd.dai.Main</mainClass>

            </manifest>

          </archive>

        </configuration>

      </plugin>

    </plugins>

  </build>

</project>

# Download the dependencies and their transitive dependencies

./mvnw dependency:go-offline

# Package the application

./mvnw package

# Run the application

java -jar target/java-intellij-idea-and-maven-1.0-SNAPSHOT.jar

24 Practical content



The output should be Hello World!.

Congratulations! You have successfully created and run your first Maven

project!

You could share this JAR file with other developers and they could run it on

their computer, without having to install IntelliJ IDEA or Maven, as long as

they have Java installed.

Create and store IntelliJ IDEA Run/Debug configurations

Running Maven commands from the command line is not very convenient.

You can store the Maven configuration as an IntelliJ IDEA Run/Debug

configuration.

This will allow you to run Maven commands from IntelliJ IDEA, without

having to open a terminal.

Other developers will also be able to run Maven commands from IntelliJ

IDEA, as the Run/Debug configurations can be committed to Git.

In the "Run" tab, click on the "Edit Configurations..." button.

Click on the "+" button and select "Maven".

Fill the form as shown in the following screenshot to create the "Package

application as JAR file" Run/Debug configuration:

25 Practical content



Notice the Run command: dependency:go-offline clean compile package.

This will download the dependencies, delete the compiled classes, compile

the source code and package the application.

By checking the Store as project file checkbox, the Run/Debug configuration

will be stored in the .idea directory, which can be committed to Git.

Make usage of the Maven wrapper by modifying the Maven option.

Save the configuration and run it by pressing the "Run" button in the

toolbar.

The output should be similar to the previous execution of Maven.

Do the same to run the application: in the "Run" tab, click on the "Edit

Configurations..." button.

Click on the "+" button and select "Application".

Fill the form as shown in the following screenshot to create the "Run the

application" Run/Debug configuration:

26 Practical content



Save the configuration and run it by pressing the "Run" button in the

toolbar.

The output should be similar to the first execution of the application.

These configurations will allow you (and us when we will correct your

practical works) to quickly run the application while developing and

package it for distribution.

Add a dependency

A dependency is an external library used by your application. Let's add a

library to create command-line applications.

Picocli aims to be the easiest way to create rich command line

applications that can run on and off the JVM.

https://picocli.info/

It is a modern library for building powerful, user-friendly, command line

applications in Java.

27 Practical content

https://picocli.info/


Use the latest stable version of picocli available on the Maven Repository

(https://mvnrepository.com/artifact/info.picocli/picocli):

Important

What is the difference between a Maven dependency and a Maven plugin ?

A plugin performs a specific task, such as compiling the source code or

generating a JAR file. It won't be included in the JAR file generated by Maven.

A dependency is an external library used by your application, such as

picocli. It will be included in the JAR file generated by Maven.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

  <modelVersion>4.0.0</modelVersion>

  <groupId>ch.heigvd.dai</groupId>

  <artifactId>java-intellij-idea-and-maven</artifactId>

  <version>1.0-SNAPSHOT</version>

  <properties>

<!-- Omitted for brevity -->

  </properties>

  <dependencies>

<!-- https://mvnrepository.com/artifact/info.picocli/picocli -->

    <dependency>

      <groupId>info.picocli</groupId>

      <artifactId>picocli</artifactId>

      <version>4.7.6</version>

    </dependency>

  </dependencies>

  <build>

    <plugins>

<!-- Omitted for brevity -->

    </plugins>

  </build>

</project>

28 Practical content

https://mvnrepository.com/artifact/info.picocli/picocli


You can find more information about this in this StackOverflow answer

Update the src/main/java/ch/heigvd/Main.java file to create a hello command

with picocli:

Tip

Having trouble with IntelliJ IDEA not recognizing the CommandLine class? Try

the following: Right-click on the project > Maven > Reload project.

This will reload the Maven project and download the dependencies.

package ch.heigvd.dai;

import java.util.concurrent.Callable;

import picocli.CommandLine;

@CommandLine.Command(

    name = "hello",

    description = "Print a 'Hello World!' type of message.",

    version = "1.0.0",

    mixinStandardHelpOptions = true)

class Main implements Callable<Integer> {

@CommandLine.Parameters(

      index = "0",

      description = "The name of the user (default: World).",

      defaultValue = "World")

protected String name;

@Override

public Integer call() {

System.out.println("Hello " + name + "!");

return 0;

}

public static void main(String... args) {

int exitCode = new CommandLine(new Main()).execute(args);

System.exit(exitCode);

}

}

29 Practical content

https://stackoverflow.com/a/52119718


The @CommandLine.Command annotation is used to define a command.

The @CommandLine.Parameters annotation is used to define what picocli calls

a parameter. A parameter is a command-line argument that takes a position

in the command line.

The call function is called when the command is executed.

Build and run the project

Run the Package application as JAR file Run/Debug configuration to

package the application.

Run the JAR file using the java command in the terminal (spoiler, it will fail):

It does not work! The output is an error message:

Why? Because the maven-jar-plugin does not include the dependencies in the

JAR file by default.

Let's fix this.

Update the pom.xml file to include the dependencies in the JAR file

Update the pom.xml file to include the dependencies in the JAR file using the

maven-shade-plugin plugin.

You can find the latest version of the maven-shade-plugin on the Maven

Repository: https://mvnrepository.com/artifact/org.apache.maven.plugins/

maven-shade-plugin.

# Run the application

java -jar target/java-intellij-idea-and-maven-1.0-SNAPSHOT.jar

Exception in thread "main" java.lang.NoClassDefFoundError: picocli/CommandLine

        at ch.heigvd.dai.Main.main(Main.java:28)

Caused by: java.lang.ClassNotFoundException: picocli.CommandLine

        at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.java:

641)

        at java.base/

jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.java:188)

        at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:526)

        ... 1 more

30 Practical content

https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-shade-plugin
https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-shade-plugin


Replace the previous maven-jar-plugin section with the following:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

  <modelVersion>4.0.0</modelVersion>

  <groupId>ch.heigvd.dai</groupId>

  <artifactId>java-intellij-idea-and-maven</artifactId>

  <version>1.0-SNAPSHOT</version>

  <properties>

<!-- Omitted for brevity -->

  </properties>

  <dependencies>

<!-- Omitted for brevity -->

  </dependencies>

  <build>

    <plugins>
<!-- https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-shade-

plugin -->

      <plugin>

        <groupId>org.apache.maven.plugins</groupId>

        <artifactId>maven-shade-plugin</artifactId>

        <version>3.6.0</version>

        <executions>

          <execution>

            <goals>

              <goal>shade</goal>

            </goals>

            <phase>package</phase>

            <configuration>

              <transformers>
                <transformer

implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

                  <mainClass>ch.heigvd.dai.Main</mainClass>

                </transformer>
                <transformer

implementation="org.apache.maven.plugins.shade.resource.DontIncludeResourceTransformer">

                  <resource>MANIFEST.MF</resource>

31 Practical content



This plugin will intervene in the package phase of the Maven lifecycle. It will

execute the shade goal, which will transform the JAR file to include the

dependencies.

A goal is a specific command that can be executed by a plugin.

Rebuild the project using the Package application as JAR file Run/Debug

configuration as seen before.

You should notice the following elements:

The target directory contains the java-intellij-idea-and-maven-1.0-SNAPSHOT.jar

file

A new original-java-intellij-idea-and-maven-1.0-SNAPSHOT.jar file was created

A new dependency-reduced-pom.xml file was created

The java-intellij-idea-and-maven-1.0-SNAPSHOT.jar file is the JAR file generated by

the maven-shade-plugin plugin with all dependencies included.

The original-java-intellij-idea-and-maven-1.0-SNAPSHOT.jar file is the JAR file

generated by the maven-shade-plugin plugin without all dependencies

included. If you try to run the application with this JAR file, you will get the

same error as before.

The dependency-reduced-pom.xml file is a reduced version of the pom.xml file,

containing only the dependencies used by the application and not the

transitive dependencies.

Important

Why is it so complex to package an application with Java and Maven? Why

do we need to use a plugin to include the dependencies in the JAR file?

                </transformer>

              </transformers>

            </configuration>

          </execution>

        </executions>

      </plugin>

    </plugins>

  </build>

</project>

• 

• 

• 

32 Practical content



Java can be used to develop many different types of applications, such as

desktop applications, mobile applications, web applications, librairies, etc.

Each type of application has its own needs and specificities. This is why

Maven does not include the dependencies in the JAR file by default. This is

also why we need to use a plugin to include the dependencies in the JAR

file.

We will not go any deeper in this topic in this course. You will learn more

about this in other future courses. Our goal here is to give you the tools to

develop Java applications and share them with other developers easily.

Run the JAR file using the java command in the terminal as seen before.

The output should be similar to this:

If you execute the JAR file using the --help command, you should see the

help message:

The output should be similar to this:

picocli is used to create the hello command, which allows you to print a

custom message to the console.

Try to execute the hello command with a positional parameter:

Let's improve our picocli CLI by refactoring our Maven project to add two

subcommands: hello and goodbye.

Create a new class called Hello in the ch.heigvd.dai.commands package (src/

main/java/ch/heigvd/dai/commands/Hello.java) with the following content:

Hello World!

# Display the help message

java -jar target/java-intellij-idea-and-maven-1.0-SNAPSHOT.jar --help

Usage: hello [-hV] <name>

Print a 'Hello World!' type of message.

      <name>      The name of the user (default: World).

  -h, --help      Show this help message and exit.

  -V, --version   Print version information and exit.

# Use a custom name

java -jar target/java-intellij-idea-and-maven-1.0-SNAPSHOT.jar "DAI student"

33 Practical content



The @CommandLine.ParentCommand annotation is used to define a parent

command. It allows you to access the parent command from a

subcommand.

The @CommandLine.Option annotation is used to define what picocli calls an

option. An option is a command-line argument that starts with a dash (-) or

double dash (--).

Create a new class called Goodbye in the ch.heigvd.dai.commands package (src/

main/java/ch/heigvd/dai/commands/Goodbye.java) with the follwing content:

package ch.heigvd.dai.commands;

import ch.heigvd.dai.Main;

import java.util.concurrent.Callable;

import picocli.CommandLine;

@CommandLine.Command(name = "hello", description = "Print a 'Hello World!' type of 
message.")

public class Hello implements Callable<Integer> {

@CommandLine.ParentCommand protected Main parent;

@CommandLine.Option(

      names = {"-g", "--greetings"},

      description = "The greetings to address the user (default: Hello).",

      defaultValue = "Hello")

protected String greetings;

@Override

public Integer call() {

System.out.println(greetings + " " + parent.getName() + "!");

return 0;

}

}

package ch.heigvd.dai.commands;

import ch.heigvd.dai.Main;

import java.util.concurrent.Callable;

import picocli.CommandLine;

34 Practical content



Update the Main class to make usage of these two subcommands:

@CommandLine.Command(name = "goodbye", description = "Print a 'Goodbye World!' 
type of message.")

public class Goodbye implements Callable<Integer> {

@CommandLine.ParentCommand protected Main parent;

@CommandLine.Option(

      names = {"-f", "--farewells"},

      description = "The farewells to address the user (default: Goodbye).",

      defaultValue = "Goodbye")

protected String farewells;

@Override

public Integer call() {

System.out.println(farewells + " " + parent.getName() + "!");

return 0;

}

}

package ch.heigvd.dai;

import ch.heigvd.dai.commands.Goodbye;

import ch.heigvd.dai.commands.Hello;

import java.io.File;

import picocli.CommandLine;

@CommandLine.Command(

    description = "A small CLI with subcommands to demonstrate picocli.",

    version = "1.0.0",

    subcommands = {

      Hello.class,

      Goodbye.class,

},

    scope = CommandLine.ScopeType.INHERIT,

    mixinStandardHelpOptions = true)

public class Main {

@CommandLine.Parameters(

      index = "0",

35 Practical content



The subcommands allows to specify the subcommands of the main command.

The scope allows to inherit the options of the parent command to the

subcommands.

The getName method allows to access the name of the user from the

subcommands.

Build as seen before.

Run the JAR file using the java command in the terminal as seen before.

The output should be similar to this:

      description = "The name of the user (default: World).",

      defaultValue = "World")

protected String name;

public String getName() {

return this.name;

}

public static void main(String[] args) {

String jarFilename =

// Source: https://stackoverflow.com/a/11159435

new File(Main.class.getProtectionDomain().getCodeSource().getLocation().getPath())

.getName();

int exitCode = new CommandLine(new
Main()).setCommandName(jarFilename).execute(args);

System.exit(exitCode);

}

}

Usage: java-intellij-idea-and-maven-1.0-SNAPSHOT.jar [-hV] <name> [COMMAND]

A small CLI with subcommands to demonstrate picocli.

      <name>      The name of the user (default: World).

  -h, --help      Show this help message and exit.

  -V, --version   Print version information and exit.

Commands:

  hello    Print a 'Hello World!' type of message.

  goodbye  Print a 'Goodbye World!' type of message.

36 Practical content



Try to execute the hello command with a positional parameter and an

option:

The output should be similar to this:

Try to execute the goodbye command with a positional parameter and an

option:

The output should be similar to this:

picocli enables you to create powerful, user-friendly, command line

applications in Java with subcommands, options, positional parameters,

help messages, etc.

Now let's commit the project to Git and share it with other developers.

Initialize a local Git repository

Open a terminal within IntelliJ IDEA and initialize a local Git repository:

Ignore files for Git

By default, IntelliJ IDEA did create a .gitignore file and a .idea/.gitignore file

containing the files to be ignored by Git.

If you open these files, you will notice that it contains many files and

directories that are specific to IntelliJ IDEA, but also for other IDEs and

specific configurations.

# Use a custom name and greetings
java -jar target/java-intellij-idea-and-maven-1.0-SNAPSHOT.jar "DAI student" hello --

greetings "Bonjour"

Bonjour DAI student!

# Use a custom name and farewells
java -jar target/java-intellij-idea-and-maven-1.0-SNAPSHOT.jar "DAI student" goodbye --

farewells "Au revoir"

Au revoir DAI student!

# Initialize a local Git repository with a branch called `main`

git init --initial-branch=main

37 Practical content



Many tools exist to generate gitignore files, such as https://gitignore.io/. We

consider these as bad practice as it makes the comprehension of the

codebase harder (What am I really using?). You should only ignore files

that are specific to your project, the tools you are using and the

environment you are working in.

Let's clean the gitignore files.

Open the .gitignore file update the content to the following:

## IntelliJ IDEA

# General

.idea/libraries/

.idea/shelf/

.idea/compiler.xml

.idea/jarRepositories.xml

.idea/modules.xml

.idea/workspace.xml

*.iws

*.iml

*.ipr

# Editor-based HTTP Client requests

.idea/httpRequests/

# Datasource local storage ignored files

.idea/dataSources/

.idea/dataSources.local.xml

## Linux

# Temporary files

*~

## macOS

# Files created by macOS Finder

.DS_Store

## Maven

38 Practical content

https://gitignore.io/


Delete the .idea/.gitignore file.

Notice that we have added the target/ directory and the Maven wrapper JAR

file to the gitignore file. This will prevent these binary files from being

committed to Git.

Add a README

Add a README.md file to explain what the project is, how to build it and how

to run it.

Create a GitHub repository

Create a new GitHub repository as seen in a previous chapter.

Warning

Do not initialize the repository with a README, a license or a gitignore. file!

You will add these files later.

Add the remote repository and push the project to GitHub

GitHub should provide you with the commands to add the remote

repository and push the project to GitHub:

.mvn/wrapper/maven-wrapper.jar

target/

## Windows

# Windows thumbnail cache files

Thumbs.db

# Folder config file

[Dd]esktop.ini

# Add the remote repository

git remote add origin <URL_TO_YOUR_GITHUB_REPOSITORY>

# Add the files to the staging area

git add .

39 Practical content



The last command will push the main branch to the origin remote repository

and set the main branch as the default branch.

Open the GitHub repository in your browser and check that the files have

been pushed to GitHub.

Share your project in GitHub Discussions

Share your project in the GitHub Discussions of this organization: https://

github.com/orgs/heig-vd-dai-course/discussions.

Create a new discussion with the following information:

Title: DAI 2024-2025 - My picocli project - First name Last Name

Category: Show and tell

Description: The link to your GitHub repository

This will notify us that you have completed the exercise. We can then check

your work and provide feedback if we see any issues.

You can compare your solution with the official one stated in the Solution

section, however, we highly recommend you to try to complete the practical

content by yourself first to learn the most.

Go further

This is an optional section. Feel free to skip it if you do not have time.

Add Spotless to format your code

Spotless is a general-purpose formatting plugin. It allows to format (=

"beautify") your code automatically.

# Check that only the required files are added to the staging area

git status

# Commit the files to the local repository

git commit -m "Initial commit"

# Push the project to GitHub

git push --set-upstream origin main

• 

• 

• 

40 Practical content

https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions


https://github.com/diffplug/spotless/tree/main/plugin-maven

Spotless is a code formatter that can be used to format your code

automatically.

Add the Spotless Maven plugin to the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

  <modelVersion>4.0.0</modelVersion>

  <groupId>ch.heigvd.dai</groupId>

  <artifactId>java-intellij-idea-and-maven</artifactId>

  <version>1.0-SNAPSHOT</version>

  <properties>

<!-- Omitted for brevity -->

  </properties>

  <dependencies>

<!-- Omitted for brevity -->

  </dependencies>

  <build>

    <plugins>

<!-- Maven Shade plugin omitted for brevity -->

<!-- https://mvnrepository.com/artifact/com.diffplug.spotless/spotless-maven-plugin 
-->

      <plugin>

        <groupId>com.diffplug.spotless</groupId>

        <artifactId>spotless-maven-plugin</artifactId>

        <version>2.43.0</version>

        <configuration>

          <pom>

            <sortPom>

              <expandEmptyElements>false</expandEmptyElements>

              <sortPlugins>groupId,artifactId</sortPlugins>

            </sortPom>

          </pom>

41 Practical content

https://github.com/diffplug/spotless/tree/main/plugin-maven


The spotless-maven-plugin plugin will intervene in the package phase of the

Maven lifecycle. It will execute the check goal, which will check if the code is

formatted correctly.

If not, the plugin will fail the build and display an error message.

You can then fix the formatting issues using the spotless:apply goal:

To manually check the formatting issues, you can use the spotless:check goal:

The settings given in this course are settings that we judge to be good for

this course. Feel free to explore the documentation to learn more about the

different settings available.

It will format your Java files as well as your pom.xml file automatically.

          <java>

            <googleJavaFormat/>

            <importOrder/>

            <removeUnusedImports/>

            <formatAnnotations/>

          </java>

        </configuration>

        <executions>

          <execution>

            <goals>

              <goal>check</goal>

            </goals>

            <phase>package</phase>

          </execution>

        </executions>

      </plugin>

    </plugins>

  </build>

</project>

# Fix the formatting issues

./mvnw spotless:apply

# Check the formatting issues

./mvnw spotless:check

42 Practical content



Conclusion

What did you do and learn?

In this chapter, you have installed and configured Java, IntelliJ IDEA and

Maven. You have created a Java project with Maven, added a dependency to

a Maven project, and built a JAR that you can execute everywhere. You have

learned how these tools can help you to develop Java applications and

share them with other developers.

Dependencies management is a very important (yet tricky) topic. In the

context of this course, you will not go any deeper as you will cover in other

future courses.

In this course, you will use the picocli library to create command-line

applications for most of your practical works. It is a modern library for

building powerful, user-friendly, command line applications in Java with

subcommands, options, positional parameters, help messages, etc.

The documentation of picocli is very well written and you will find many

examples to help you to create your own command-line applications. We

have only scratched the surface of what picocli can do in the context of this

course. Feel free to explore the documentation to learn more.

In this chapter, you have also learned how to use Git to version your project

and share it with other developers.

Test your knowledge

At this point, you should be able to answer the following questions:

How can Java run on all platforms?

How can you install and switch between different versions of Java?

Why should you ignore some files created by IntelliJ IDEA?

What is the purpose of the pom.xml file?

How can a tool like Maven help you to develop Java applications?

• 

• 

• 

• 

• 

43 Conclusion

https://picocli.info/


Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

44 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/3


What will you do next?

In the next chapter, you will learn the following topics:

Java IOs: input/output processing 

How to read and write files?

Why is encoding important?

How to deal with exceptions?

• 

 

 

 

45 What will you do next?



Additional resources

Resources are here to help you. They are not mandatory to read.

clap - A full-featured, fast Command Line Argument Parser for Rust.

Cobra - A Commander for modern Go CLI interactions.

Missing item in the list? Feel free to open a pull request to add it! 

• 

• 

46 Additional resources

https://github.com/clap-rs/clap
https://github.com/spf13/cobra


Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

47 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions


Sources

Main illustration by Nathan Dumlao on Unsplash• 

48 Sources

https://unsplash.com/@nate_dumlao
https://unsplash.com/photos/KixfBEdyp64

	Java, IntelliJ IDEA and Maven - Course material
	Table of contents
	Objectives
	Java
	Java virtual machine
	JVM versions
	Java versions and version managers
	Compiling and running Java programs
	Summary
	Alternatives
	Resources

	IntelliJ IDEA
	Community Edition and Ultimate Edition
	JetBrains Toolbox App
	Configuration files and Git
	Summary
	Alternatives
	Resources

	Maven
	Maven project structure
	pom.xml file
	Maven lifecycle
	Maven Repository
	Maven wrapper
	Summary
	Alternatives
	Resources
	Cheat sheet

	Practical content
	Install SDKMAN!
	Install SDKMAN!
	Check the installation

	Install Java
	Install the latest version of Java
	Install the latest LTS version of Java
	Switch between Java versions
	Set the default Java version

	Install Maven
	Install Maven
	Check the installation

	Install and configure IntelliJ IDEA
	Enable the IntelliJ student license
	Download and install IntelliJ Toolbox App
	Enable the student license in IntelliJ Toolbox App
	Install IntelliJ IDEA Ultimate Edition

	Create and run a new Maven project with IntelliJ IDEA
	Create the IntelliJ IDEA project
	Run the Java project from IntelliJ IDEA
	Initialize the Maven wrapper
	Update the pom.xml file to generate a JAR file
	Package and run the project from the command line
	Create and store IntelliJ IDEA Run/Debug configurations
	Add a dependency
	Build and run the project
	Update the pom.xml file to include the dependencies in the JAR file
	Initialize a local Git repository
	Ignore files for Git
	Add a README
	Create a GitHub repository
	Add the remote repository and push the project to GitHub
	Share your project in GitHub Discussions

	Go further
	Add Spotless to format your code


	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Sources


