
Java IOs - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/05-java-ios/05-java-ios-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

Prepare and setup your environment

Check and run the code examples

Sources, streams and sinks of data

The Java IO API

Types of data

Processing binary data with the Java IO API

Reading binary data

Writing binary data

Reading and writing binary data with buffers

A quick note on little endian vs. big endian

Processing text data with the Java IO API

Ancestor of character representations: ASCII

Extended ASCII: codes pages

Unicode

UTF-8

What happens if you ignore the character encoding?

Reading and writing text data

End of line characters

Dealing with errors

When to use which IO?

Common pitfalls

Practical content

Create and clone the repository

Implement the different types of streams

Compare the results

Share your results

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Additional resources

Solution

Sources

•

•

•

3 Table of contents

Objectives

This chapter will help you understand why IOs are important in network

programming and how to use them in Java.

Network programming is about reading and writing data (= files) from and

to the network. Files are a great example to understand how IOs work in the

first place without the hassle of network programming.

You might need to use different types of IOs depending on the type of data

you want to process. You will learn how to use the right IOs for the right

data.

As this chapter is quite abstract, you will first setup your environment to be

able to run some code examples along with the theory.

These skills are essential to be able to process data from the network later

on this course!

Let's get started!

4 Objectives

Prepare and setup your

environment

Check and run the code examples

In this section, you will clone the code examples repository to check and

run the code examples along with the theory.

Clone the repository

Clone the heig-vd-dai-course/heig-vd-dai-course-code-examples repository to get

the code examples.

Access the code examples in your terminal

Open a terminal and navigate to the heig-vd-dai-course-code-examples

directory.

As a quick reminder, these commands can help you to navigate in the

terminal:

ls to list the files and directories in the current directory

cd directory to navigate to the directory directory

cd .. to navigate to the parent directory

pwd to print the current directory

clear to clear the terminal

exit to exit the terminal

Explore and run the code examples

In the 05-java-ios directory, check out the README.md file to learn how to run

the code examples.

As a quick reminder, you can run the code examples using the following

command:

•

•

•

•

•

•

5 Prepare and setup your environment

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples

You now have everything you need to run the code examples. Let's dive into

the theory!

Compile the code example

javac HelloWorld.java

Run the code example

java HelloWorld

6 Prepare and setup your environment

Sources, streams and sinks of

data

Whenever you deal with data, you need to read data from a source and

write it to a destination.

An abstraction of this process is called sources, streams and sinks of data.

A stream is a way to read or write data from a source to a sink.

A source of data is where the data comes from. It can be a file, a network

connection, a keyboard, etc. A common term for a source of data is

something that produces data (a producer).

A sink of data is where the data goes. It can be another file, a network

connection, a screen, etc. A common term for a sink of data is something

that consumes data (a consumer).

A stream is a way to read or write data from a source to a sink.

7 Sources, streams and sinks of data

The Java IO API

The Java documentation is separated in modules. The Java IO API is part of

the java.base module.

In the java.base module, there are two main packages to read and write data:

java.io: the standard Java IO API

java.nio: the Java NIO API

The java.io package is called Java IO API or the standard Java IO API.

The Java NIO API was introduced in Java 1.4. It is a more modern API that

can be more efficient and more flexible than the Java IO API in some use-

case. It is also more complex to use and is meant for more advanced use

cases (writing scalable servers for example). We will not cover this API in

this course.

•

•

8 The Java IO API

https://docs.oracle.com/en/java/javase/21/docs/api/

Types of data

When you deal with data, you need to know what type of data you are

dealing with.

There are two main types of data:

Binary data: data that is stored as bytes. This is the most basic type of

data. It is used to store files, images, videos, etc.

Text data: data that is stored as characters. This is a more complex type

of data. It is used to store text files, configuration files, etc.

What differentiates binary data from text data is how the data is

interpreted:

Binary data: the data is read or written as bytes. You do not have to

interpret the bytes, you just use them as they are.

Text data: the data is read or written as characters. You have to interpret

the bytes to get the characters.

When you read or write data, you need to know what type of data you are

dealing with to use the right tools to read or write the data.

•

•

•

•

9 Types of data

Processing binary data with the

Java IO API

Binary data processing is the most basic type of data processing:

You open a file

You read/write/modify the bytes as they are (e.g. copy to another file).

You close the file

You do not have to interpret the bytes, you just use them as they are.

Reading binary data

When you read binary data, you read the bytes as they are stored in the file.

The most simple way to read binary data is byte by byte.

This is done using the InputStream class. The InputStream class is an abstract

class that is the superclass of all classes representing an input stream of

bytes (e.g. FileInputStream).

Open the BinaryReadFileExample.java file in the 05-java-ios directory to see how

to read binary data byte by byte.

The following line opens a file for reading binary data. It will attempt to

open the file binary-file.bin in the current directory:

As this file is not yet created, the program will throw a FileNotFoundException

exception if you try to execute the program. This is normal. You will create

this file and run the program later.

The following line reads data from the file byte by byte:

1.

2.

3.

InputStream fis = new FileInputStream("binary-file.bin");

// -1 indicates the end of the file

int b;

while ((b = fis.read()) != -1) {

10 Processing binary data with the Java IO API

Each read() call will read one byte from the file. The read() method returns

the byte read as an int. If the end of the file is reached, the read() method

will return -1.

The following line closes the file:

This is important to close the file after you have read the data. If you do not

close the file, you might lose data or corrupt the file as other processes

might not be able to access the file.

Compile and execute the BinaryReadFileExample.java file. This will throw a

FileNotFoundException exception as the file binary-file.bin does not yet exist.

Continue to the next section to see how to create this file.

Writing binary data

When you write binary data, you write the bytes as they are stored in the

file.

The most simple way to write binary data is byte by byte.

This is done using the OutputStream class. The OutputStream class is an

abstract class that is the superclass of all classes representing an output

stream of bytes.

Open the BinaryWriteFileExample.java file in the 05-java-ios directory to see how

to write binary data byte by byte.

The following line opens a file for writing binary data. It will attempt to

open the file binary-file.bin in the current directory:

The following line writes data to the file byte by byte:

System.out.print(b);

}

fis.close();

OutputStream fos = new FileOutputStream("binary-file.bin");

for (int i = 0; i < 256; i++) {

 fos.write(i);

}

11 Processing binary data with the Java IO API

Each write() call will write one byte to the file.

The following line closes the file:

This is important to close the file after you have read the data. If you do not

close the file, you might lose data or corrupt the file as other processes

might not be able to access the file.

Compile and execute the BinaryWriteFileExample.java file. This will create the

file binary-file.bin in the current directory.

Compile and execute the BinaryReadFileExample.java file. This will read the

content of the file binary-file.bin and print the file content to the console.

Reading and writing binary data with buffers

When you read or write binary data byte by byte, each read() or write() call

will issue a system call to read or write one byte from or to the file. This is

not efficient.

To improve the performance, you can (and should) use a buffer. Instead of

reading one byte at a time, you can read a block of bytes at a time:

When reading for the first time, a system call is made and the data read

is stored in the buffer.

Then, as long as the buffer is not empty, we read from it (no system

call).

As soon as the buffer is empty, a new system call is made and the

process is repeated.

The same applies when writing data:

When writing for the first time, a system call is made and a buffer is

created to store the data.

Then, as long as the buffer is not full, we write to it (no system call).

As soon as the buffer is full, its content is written to the file and the

buffer is emptied and the process is repeated.

When closing the file, the remaining data in the buffer is written to the

file.

This is done using the BufferedInputStream and BufferedOutputStream classes.

fis.close();

•

•

•

•

•

•

•

12 Processing binary data with the Java IO API

The BufferedInputStream class is a subclass of the InputStream class that adds

buffering to the input stream. The BufferedOutputStream class is a subclass of

the OutputStream class that adds buffering to the output stream.

Open the BinaryBufferReadFileExample.java file in the 05-java-ios directory to see

how to read binary data with buffers.

Here are the changes between the BinaryReadFileExample.java file and the

BinaryBufferReadFileExample.java file:

The BufferedInputStream class is created with the FileInputStream class as an

argument. The BufferedInputStream class will read data from the FileInputStream

class and store it in a buffer.

The BufferedInputStream class will read data from the buffer instead of

reading data from the file directly. This is more efficient as the buffer can

store more data than the FileInputStream class can read in one system call.

Compile and execute the BinaryBufferReadFileExample.java file. This will read the

content of the file binary-file.bin and print the file content to the console.

Open the BinaryBufferWriteFileExample.java file in the 05-java-ios directory to see

how to write binary data with buffers.

Here are the changes between the BinaryWriteFileExample.java file and the

BinaryBufferWriteFileExample.java file:

 public static void main(String[] args) throws IOException {

 InputStream fis = new FileInputStream("binary-file.bin");

+ BufferedInputStream bis = new BufferedInputStream(fis);

 // -1 indicates the end of the file

 int b;

- while ((b = fis.read()) != -1) {

+ while ((b = bis.read()) != -1) {

 System.out.print(b);

 }

- fis.close();

+ // Closing the BufferedInputStream automatically closes the FileInputStream

+ bis.close();

 }

13 Processing binary data with the Java IO API

The BufferedOutputStream class is created with the FileOutputStream class as an

argument. The BufferedOutputStream class will write data to the

FileOutputStream class and store it in a buffer.

The BufferedOutputStream class will write data to the buffer instead of writing

data to the file directly. This is more efficient as the buffer can store more

data than the FileOutputStream class can write in one system call.

The flush() method is called to write the remaining bytes in the buffer to the

file. The flush() method is automatically called when the close() method is

called.

We recommend calling the flush() method before calling the close() method

anyway to ensure that all data is written to the file just in case you do some

other operations before effectively closing the file.

Compile and execute the BinaryBufferWriteFileExample.java file. This will create

the file binary-file.bin in the current directory.

Compile and execute the BinaryBufferReadFileExample.java file. This will read the

content of the file binary-file.bin and print the file content to the console.

A quick note on little endian vs. big endian

When working with binary data, you need to know if the data is encoded in

little endian or in big endian.

 public static void main(String[] args) throws IOException {

 OutputStream fos = new FileOutputStream("binary-file.bin");

+ BufferedOutputStream bos = new BufferedOutputStream(fos);

 for (int i = 0; i < 256; i++) {

- fos.write(i);

+ bos.write(i);

 }

- fos.close();

+ // Flush the buffer to write the remaining bytes

+ bos.flush();

+ bos.close();

 }

14 Processing binary data with the Java IO API

Little endian means that the least significant byte is stored first. Big endian

means that the most significant byte is stored first.

For example, the number 0x12345678 is stored as 0x78 0x56 0x34 0x12 in little

endian and as 0x12 0x34 0x56 0x78 in big endian.

This is important to know when you read or write binary data. If you read or

write binary data in the wrong endian, the data will be corrupted.

Java uses big endian by default. You can use little endian by using the

ByteBuffer class. We will not cover this in this course.

15 Processing binary data with the Java IO API

Processing text data with the

Java IO API

While binary data processing is quite simple, text data processing is more

complex.

When you read text data, you need to interpret the bytes to get the

characters.

When you write text data, you need to encode the characters to bytes.

To better understand text data processing, you need to understand

character encodings.

Ancestor of character representations: ASCII

The American Standard Code for Information Interchange (ASCII) is one of

the first character encodings. It is a character encoding that maps 128

binary values to 128 characters. For example, the binary data 01000001 is

mapped to the character A.

The first implementation of ASCII was published in 1963. It was meant to be

used for the English language only. It was later extended to support other

languages.

Extended ASCII: codes pages

As ASCII is a very limited character encoding (only 8 bits, leaving 128 other

possible values), many other character encodings were created to support

more characters and languages.

These extended ASCII character encodings are called code pages. They were

then standardized by the International Organization for Standardization

(ISO).

16 Processing text data with the Java IO API

Common code pages are ISO-8859-1 (also called Latin-1), ISO-8859-15 (also

called Latin-9), Windows-1252 (also called CP1252), etc.

Unicode

Unicode is a newer character encoding standard that was meant to solve

the issues of ASCII and code pages that could not support all specificities of

all languages:

Languages with more than 256 characters (like Chinese)

Languages with more than one alphabet (like Serbian)

Languages with more than one writing system (like Chinese or Japanese)

The Unicode specification defines 1,112,064 characters.

This is enough to support all languages in the world as well as emojis (for

our greatest pleasure...).

Implementations of the Unicode standard are called Unicode

Transformation Formats (UTF). The most common implementations is

UTF-8.

UTF-8

UTF-8 is a variable-length character encoding that uses 1 to 4 bytes to

encode a character. It is the most common implementation of the Unicode

standard. It is the default character encoding on the Internet and many

other applications.

UTF-8 is backward compatible with ASCII. This means that if you have a file

encoded in ASCII, it is also encoded in UTF-8.

The following table shows how a character is encoded in UTF-8 depending

on the number of bytes used:

Binary data Meaning

0xxxxxxx 1 byte character

110xxxxx 10xxxxxx 2 bytes character

1110xxxx 10xxxxxx 10xxxxxx 3 bytes character

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 4 bytes character

•

•

•

17 Processing text data with the Java IO API

As some bits are used to encode the length of the character, the number of

possible characters is limited, hence the 1,112,064 characters limit.

Other implementations of the Unicode standard exist, such as UTF-16 and

UTF-32. They are not as common as UTF-8 and are not backward compatible

with ASCII.

Java strings for instance uses UTF-16, meaning a character is encoded in 2

bytes (in C/C++, a character is encoded in 1 byte).

What happens if you ignore the character encoding?

When you open a file, you need to know the character encoding that was

used to encode the file.

The character encoding is not usually stored in the file. You need to know it

in advance to be able to read the file correctly.

When the character encoding is not known in advance or misinterpreted, it

can lead to issues like displaying the wrong characters or not being able to

display the characters at all.

A good example is when you open a text file encoded in UTF-8 with a text

editor that does not support UTF-8. The text editor will try to interpret the

file as ASCII and will display the wrong characters (Ã© instead of é for

example).

Open the TextCharacterEncodingsExample.java file in the 05-java-ios directory to

see how to encode and decode characters with different character

encodings.

Compile and execute the TextCharacterEncodingsExample.java file. This will print

the word "student" encoded in different character encodings for different

languages.

Notice that the word "student" is encoded in different ways depending on

the character encoding used. This is because the character encoding

defines how the characters are encoded in bytes.

If you do not set the character encoding when you read or write text data,

the default character encoding will be used. This is not what you want as

the file might be encoded in a different character encoding and all systems

might not be able to read the file correctly.

18 Processing text data with the Java IO API

Reading and writing text data

When you read and write text data, you need to know the character

encoding used to encode the text data.

This is done using the Reader and Writer classes:

The Reader class is an abstract class that is the superclass of all classes

representing an input stream of characters (e.g. FileReader).

The Writer class is an abstract class that is the superclass of all classes

representing an output stream of characters (e.g. FileWriter).

Open the TextReadAndWriteFileExample.java file in the 05-java-ios directory to see

how to read and write text data.

The following line opens a file for reading text data. It will attempt to open

the file TextReadAndWriteFileExample.java (the current file) in the current

directory:

Notice that the character encoding is set to UTF-8. This is important to set

the character encoding when you read or write text data. If you do not set

the character encoding, the default character encoding will be used, which

is not what you want as it can differ from other systems.

The following line opens a file for writing text data. It will attempt to open

the file TextReadAndWriteFileExample.txt in the current directory:

The following line reads data from the file byte by byte and writes it to the

output file:

Just as with binary data, each character is read and written byte by byte.

The following line closes the file:

•

•

Reader reader = new FileReader("TextReadAndWriteFileExample.java",
StandardCharsets.UTF_8);

Writer writer = new FileWriter("TextReadAndWriteFileExample.txt",
StandardCharsets.UTF_8);

// -1 indicates the end of the file

int c;

while ((c = reader.read()) != -1) {

 writer.write(c);

}

19 Processing text data with the Java IO API

Just as with binary data, reading and writing text data byte by byte is not

efficient. You can use a buffer to read and write text data more efficiently.

Open the TextBufferReadAndWriteFileExample.java file in the 05-java-ios directory

to see how to read and write text data with buffers.

Here are the changes between the TextReadAndWriteFileExample.java file and the

TextBufferReadAndWriteFileExample.java file:

The BufferedReader class is created with the FileReader class as an argument.

The BufferedReader class will read data from the FileReader class and store it in

a buffer.

writer.close();

reader.close();

 public static void main(String[] args) throws IOException {
 Reader reader = new FileReader("TextReadAndWriteFileExample.java",

StandardCharsets.UTF_8);

+ BufferedReader br = new BufferedReader(reader);

+
 Writer writer = new FileWriter("TextReadAndWriteFileExample.txt",

StandardCharsets.UTF_8);

+ BufferedWriter bw = new BufferedWriter(writer);

 // -1 indicates the end of the file

 int c;

- while ((c = reader.read()) != -1) {

- writer.write(c);

+ while ((c = br.read()) != -1) {

+ bw.write(c);

 }

- writer.close();

- reader.close();

+ // Flush the buffer to write the remaining bytes

+ bw.flush();

+ bw.close();

+ br.close();

 }

20 Processing text data with the Java IO API

The BufferedReader class will read data from the buffer instead of reading

data from the file directly. This is more efficient as the buffer can store more

data than the FileReader class can read in one system call.

The BufferedWriter class is created with the FileWriter class as an argument.

The BufferedWriter class will write data to the FileWriter class and store it in a

buffer.

The BufferedWriter class will write data to the buffer instead of writing data to

the file directly. This is more efficient as the buffer can store more data than

the FileWriter class can write in one system call.

The flush() method is called to write the remaining bytes in the buffer to the

file. This is important to call the flush() method to make sure that all data is

written to the file.

Compile and execute the TextBufferReadAndWriteFileExample.java file. This will

read the content of the file TextReadAndWriteFileExample.java and write the file

content to the file TextReadAndWriteFileExample.txt.

End of line characters

Another important thing to know when dealing with text files is the end of

line character.

The end of line character is a special character that marks the end of a line.

There are different end of line characters depending on the operating

system:

Unix/Linux/macOS: '\n', called "Line feed" (LF)

Windows: '\r\n', called "Carriage Return + Line feed" (CR+LF)

When you read a text file line by line, the string you get will not contain the

end of line character(s).

When you write a string to a file, you have to add the end of line

character(s) yourself if you want to write a new line.

Open the TextEndOfLineCharactersExample.java file in the 05-java-ios directory to

see how to read and write text data with end of line characters.

•

•

21 Processing text data with the Java IO API

The following line opens a file for writing text data. It will attempt to open

the file TextEndOfLineCharactersExample.java (the current file) in the current

directory:

Notice that this time, it opens the input file using a FileInputStream class as

binary data. It then uses the class InputStreamReader to decode the binary

data to text data using the UTF-8 character encoding. And finally, it uses the

BufferedReader class to read the text data with buffers.

The following line opens a file for writing text data. It will attempt to open

the file TextEndOfLineCharactersExample.txt in the current directory:

Notice that this time, it opens the output file using a FileOutputStream class

as binary data. It then uses th class OutputStreamWriter to write the file with

the UTF-8 character encoding. And finally, it uses a BufferedWriter class to

write the binary data with buffers.

The following line reads data from the file line by line and writes it to the

output file with the end of line character:

The readLine() method reads a line from the file. The line does not contain

the end of line character(s). You have to add the end of line character(s)

yourself if you want to write a new line.

Compile and execute the TextEndOfLineCharactersExample.java file. This will read

the content of the file TextEndOfLineCharactersExample.java and write the file

content to the file TextEndOfLineCharactersExample.txt with the end of line

character(s).

InputStream is = new FileInputStream("TextEndOfLineCharactersExample.java");

Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8);

BufferedReader br = new BufferedReader(reader);

OutputStream os = new FileOutputStream("LineEndingsExample.txt");

Writer writer = new OutputStreamWriter(os, StandardCharsets.UTF_8);

BufferedWriter bw = new BufferedWriter(writer);

String line;

while ((line = br.readLine()) != null) {

// Careful: line does not contain end of line characters

 bw.write(line + END_OF_LINE);

}

22 Processing text data with the Java IO API

While the System.lineSeparator() method returns the end of line character(s)

for the current operating system, it is better to set a constant for the end of

line character(s) in your program. This way, you can control the end of line

character(s) and make sure that the file is written correctly for all systems.

Dealing with errors

When using the Java IO API, you need to open and close a file before and

after reading or writing data.

If you do not close the file properly, you might lose data or corrupt the file.

When accessing a file, many things can go wrong. The file might not exist,

the file might be corrupted, the file might be locked by another process, etc.

When you open a file, you need to handle these errors not matter if you are

work with binary or text data. This is done with a try-catch-finally block or,

more recently, with a try-with-resources block.

The common exceptions you might encounter are:

FileNotFoundException: the file does not exist

UnsupportedEncodingException: the file is encoded in an unsupported

character encoding

IOException: the file cannot be accessed for other reasons

The FileNotFoundException and UnsupportedEncodingException exceptions are

inherited from the IOException exception.

The same applies when you will use the network in future chapters: the

network might be down, the connection might be lost, etc.

You will have to manage these errors when you will work with the network.

Open the DealingWithErrorsExample.java file in the 05-java-ios directory to see

how to handle errors when reading and writing data.

The following function is a bad example of how to handle errors when

reading and writing binary data:

•

•

•

public static void tryCatchWithoutFinallyExample() {

try {

Reader reader = new FileReader("missing.file");

23 Processing text data with the Java IO API

It catches an exception but does not close the resources properly as seen in

the previous sections.

Even if the reader and writer would be closed after the

writer.write(reader.read()); line, it would be enough: if an error occurs when

trying to write to the file (for reasons such as bad permissions, another

process locking the file, etc.), the resources would not be closed properly.

This can lead to resource leaks (= resources that are not closed properly

and that are not available for other parts of the program) and corrupted

files.

A better way to handle errors is to use the try-catch-finally block as seen in

the following function:

Writer writer = new FileWriter("missing.file");

 writer.write(reader.read());

} catch (IOException e) {

System.out.println("Exception: " + e);

}

}

public static void tryCatchFinallyExample() {

Reader reader = null;

Writer writer = null;

try {

 reader = new FileReader("missing.file");

 writer = new FileWriter("missing.file");

 writer.write(reader.read());

} catch (IOException e) {

System.out.println("Exception: " + e);

} finally {

if (writer != null) {

try {

 writer.close();

} catch (IOException e) {

System.out.println("Exception in close writer: " + e);

}

}

24 Processing text data with the Java IO API

Using the finally block, the resources are closed properly whenever an error

occurs or not. A finally block is always executed, even if no exception is

thrown.

This solution is better than the previous one, but it is verbose and hard to

read. Let's see how to handle errors with the try-with-resources block.

The try-with-resources block is a more concise and less error-prone way to

handle errors when reading and writing data as seen in the following

function:

The try-with-resources block is a try block that declares one or more resources.

A resource is an object that must be closed after the program is done with

it. The try-with-resources block ensures that each resource is closed at the

end of the block.

While both try-catching-finally and try-with-resources blocks are valid ways to

handle errors when reading and writing data, the try-with-resources block is

the preferred way as it is more concise and less error-prone (you do not

have to remember to close the resources in the finally block).

if (reader != null) {

try {

 reader.close();

} catch (IOException e) {

System.out.println("Exception in close reader: " + e);

}

}

}

}

public static void tryWithResourcesExample() {

try (Reader reader = new FileReader("missing.file");

Writer writer = new FileWriter("missing.file")) {

 writer.write(reader.read());

} catch (IOException e) {

System.out.println("Exception: " + e);

}

}

25 Processing text data with the Java IO API

In order for a class to be used in a try-with-resources block, it must implement

the AutoCloseable interface. All the classes presented in this chapter

implement the AutoCloseable interface, whatever you are dealing with binary

or text data.

We highly recommend you to use the try-with-resources block as it is the

preferred way to handle errors and close resources.

26 Processing text data with the Java IO API

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/AutoCloseable.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/AutoCloseable.html

When to use which IO?

The Java IO API is very powerful. It can be used to read and write data from

and to different sources and sinks of data using different types of streams.

It can sometimes be overwhelming to know which IO to use for which use

case.

Here is a simple decision tree to help you choose the right IO for the right

use case:

27 When to use which IO?

Common pitfalls

Always set the character encoding when you read or write text data. If you

do not set the character encoding, the default character encoding will be

used, which is not what you want as it can differ from other systems.

Always close the file after you have read or written data. If you do not close

the file, you might lose data or corrupt the file as other processes might not

Always handle errors when you read or write data. If you do not handle

errors, your program might crash and leave the files in an inconsistent

state.

While reading the Java IO API, you might encounter the class PrintWriter. The

PrintWriter class is a subclass of the Writer class that is used to write text data.

It provides many conveniences where you do not have to handle the flush()

and close() methods yourself. However, it does not handle errors properly as

it does not throw exceptions when an error occurs. We will ask you not to

use the PrintWriter class in this course. It is better to use the BufferedWriter

class to write text data and handle errors properly.

You might also encounter the System.lineSeparator() method. The

System.lineSeparator() method returns the end of line character(s) for the

current operating system. As it is a system-dependent property, it is better

to set a constant for the end of line character(s) in your program.

28 Common pitfalls

Practical content

In this practical content, you will use all the knowledge you have learned in

this chapter to benchmark the different types of streams.

You will learn how to read and write data from and to different sources and

sinks of data using different types of streams and benchmark the different

types of streams to see which one is the most efficient for different use

cases.

Create and clone the repository

You can create a new GitHub project using the template we have prepared

for you.

When you create a new repository, you can choose to use a template. Select

the heig-vd-dai-course/heig-vd-dai-course-java-ios-practical-content template as

shown in the following screenshot:

Warning

Please make sure that the repository owner is your personal GitHub account

and not the heig-vd-dai-course organization.

29 Practical content

Clone the repository locally.

Implement the different types of streams

Take some time to explore the codebase from the template we have

prepared for you.

You will benchmark the different types of streams to see which one is the

most efficient for your use case:

Open a binary file for byte per byte reading

Write a binary file for byte per byte writing

Open a binary file for buffer reading

Write a binary file for buffer writing

Open a text file for byte per byte reading

Write a text file for byte per byte writing

Open a text file for buffer reading

•

•

•

•

•

•

•

30 Practical content

Write a text file for buffer writing

You will then execute your CLI tool to write data of a certain size and read

them back to compare the execution time.

Read the course material carefully to find the right classes to use. You can

also have a look at the Java documentation to find more details on the right

classes to use and how to use them: https://docs.oracle.com/en/java/

javase/21/docs/api/.

Compare the results

Generate different files with different sizes (1B, 1KiB, 1MiB, 5MiB). Compare

the results with the execution time of the different types of streams. Which

one is the most efficient for each use case?

Share your results

Share your results in the GitHub Discussions of this organization: https://

github.com/orgs/heig-vd-dai-course/discussions.

Create a new discussion with the following information:

Title: DAI 2024-2025 - Java IOs benchmarking - First name Last Name

Category: Show and tell

Description: The link to your GitHub repository, the results of your

benchmarking in Markdown table and add your conclusions to the

following questions:

Which type of stream is the most efficient for each use case?

Why is it more efficient than the other types of streams?

What is the difference between binary data and text data?

What is a character encoding?

Why is this benchmark methodology important?

This will notify us that you have completed the exercise and we can check

your work.

You can compare your solution with the official one stated in the Solution

section, however, we highly recommend you to try to complete the practical

content by yourself first to learn the most.

•

•

•

•

31 Practical content

https://docs.oracle.com/en/java/javase/21/docs/api/
https://docs.oracle.com/en/java/javase/21/docs/api/
https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions

Go further

This is an optional section. Feel free to skip it if you do not have time.

You can do the same benchmarking with the Java NIO API. How is it

different from the Java IO API?

•

32 Practical content

Conclusion

What did you do and learn?

In this chapter, you have learned how to read and write data from and to

different sources and sinks of data using different types of streams, more

specifically binary and text data.

You have learned the importance of character encodings and how to handle

them when reading and writing data.

You have learned how to benchmark the different types of streams to find

the most efficient one for your use case.

You have also learned how to handle errors to avoid your program to crash

and leave the files in an inconsistent state.

Test your knowledge

At this point, you should be able to answer the following questions:

What is a source of data?

What is a sink of data?

What is a stream?

What is the difference between binary data and text data?

What is a character encoding?

What is UTF-8? How is it different from ASCII and Unicode?

What happens if you ignore the character encoding?

How is a buffer more efficient than reading or writing byte by byte?

•

•

•

•

•

•

•

•

33 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

34 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/4

What will you do next?

In the next chapter, you will learn the following topics:

Docker and Docker Compose: how to containerize your applications

What is an image?

What is a container?

How to try out new software without installing it?

•

35 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

Informatique au gymnase : apprendre - Les caractères

Missing item in the list? Feel free to open a pull request to add it!

•

36 Additional resources

https://apprendre.modulo-info.ch/rep-info/caracteres.html

Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

37 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions

Sources

Main illustration by Martijn Baudoin on Unsplash•

38 Sources

https://unsplash.com/@martijnbaudoin
https://unsplash.com/photos/audio-mixer-set-4h0HqC3K4-c

	Java IOs - Course material
	Table of contents
	Objectives
	Prepare and setup your environment
	Check and run the code examples
	Clone the repository
	Access the code examples in your terminal
	Explore and run the code examples

	Sources, streams and sinks of data
	The Java IO API
	Types of data
	Processing binary data with the Java IO API
	Reading binary data
	Writing binary data
	Reading and writing binary data with buffers
	A quick note on little endian vs. big endian

	Processing text data with the Java IO API
	Ancestor of character representations: ASCII
	Extended ASCII: codes pages
	Unicode
	UTF-8
	What happens if you ignore the character encoding?
	Reading and writing text data
	End of line characters
	Dealing with errors

	When to use which IO?
	Common pitfalls
	Practical content
	Create and clone the repository
	Implement the different types of streams
	Compare the results
	Share your results
	Go further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Sources

