
Java IOs

https://github.com/heig-vd-dai-course

Web · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0

https://github.com/heig-vd-dai-course
https://heig-vd-dai-course.github.io/heig-vd-dai-course/05-java-ios/
https://heig-vd-dai-course.github.io/heig-vd-dai-course/05-java-ios/05-java-ios-presentation.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Objectives

Know the different types of data
(binary vs. text)

Understand the abstract notion of
sources, streams and sink

Use the different IO types for
different use-cases

Use the Java IO API to read and
write files

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 2

Prepare and setup your environment

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 3

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Check and run the
code examples

Check the code examples

Run the code examples

Help to understand the
concepts

Play with the code
examples

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 4

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples

Sources, streams and sinks of data

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 5

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Sources, streams and
sinks of data

Abstraction of data flow

Source: where data comes from
(input)

Sink: where data goes to (output)

Stream: data flows between source
and sink

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 6

The Java IO API

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 7

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

The Java IO API

Part of java.base module

java.io package

java.nio package

Different classes for
different IO types:

Binary data

Text data

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 8

Types of data

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 9

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Types of data

Two types of data:

Binary

Text

Both are 0 s and 1 s - the
difference is in interpretation:

Binary data - raw data

Text data - interpretation

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 10

Processing binary data with the Java IO API

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 11

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Processing binary
data with the Java IO
API

Most basic type of data
processing:

1. Open a file

2. Read/write/modify the bytes
as they are

3. Close the file

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 12

Reading binary data

Most simple way is to read byte
by byte (not efficient)

InputStream and
FileInputStream classes are

used to read binary data

Let's have a look at the code
example BinaryReadFileExample

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 13

class BinaryReadFileExample {

 public static void main(String[] args) throws IOException {
 InputStream fis = new FileInputStream("binary-file.bin");

 // -1 indicates the end of the file
 int b;
 while ((b = fis.read()) != -1) {
 System.out.print(b);
 }

 fis.close();
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 14

Writing binary data

Most simple way is to write
byte by byte (not efficient)

OutputStream and
FileOutputStream classes are

used to write binary data

Let's have a look at the code
example
BinaryWriteFileExample

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 15

class BinaryWriteFileExample {

 public static void main(String[] args) throws IOException {
 OutputStream fos = new FileOutputStream("binary-file.bin");

 for (int i = 0; i < 256; i++) {
 fos.write(i);
 }

 fos.close();
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 16

Reading and writing
binary data with
buffers

Reading and writing byte by
byte is not efficient: each
read() or write() call results

in a system call every time

Buffers can be used to read
write multiple bytes at once

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 17

Use a buffer to read multiple
bytes at once:

1. First time, a system call is made
to read a block of data

2. Subsequent reads are done
from the buffer

3. When the buffer is empty, a
new block is read

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 18

The same applies for writing:

1. First time, a buffer is created

2. Data is written to the buffer

3. When the buffer is full, a
system call is made to write the
block

4. The buffer is then emptied

5. Bytes can remain in the buffer

A flush might be needed to
empty the buffer

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 19

BufferedInputStream and
BufferedOutputStream classes

are used to read/write binary
data with buffers

Let's have a look at the code
examples
BinaryBufferReadFileExample

and
BinaryBufferWriteFileExample

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 20

 public static void main(String[] args) throws IOException {
 InputStream fis = new FileInputStream("binary-file.bin");
+ InputStream bis = new BufferedInputStream(fis);

 // -1 indicates the end of the file
 int b;
- while ((b = fis.read()) != -1) {
+ while ((b = bis.read()) != -1) {
 System.out.print(b);
 }

- fis.close();
+ // Closing the BufferedInputStream automatically closes the FileInputStream
+ bis.close();
 }

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 21

 public static void main(String[] args) throws IOException {
 OutputStream fos = new FileOutputStream("binary-file.bin");
+ OutputStream bos = new BufferedOutputStream(fos);

 for (int i = 0; i < 256; i++) {
- fos.write(i);
+ bos.write(i);
 }

- fos.close();
+ // Flush the buffer to write the remaining bytes
+ bos.flush();
+ bos.close();
 }

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 22

A quick note on little endian vs. big endian

Little endian: least significant byte first

Big endian: most significant byte first

Java uses big endian by default

The class ByteBuffer can be used to convert between the two (not
covered in this course)

Example: 12345678

Little endian: 0x78 0x56 0x34 0x12

Big endian: 0x12 0x34 0x56 0x78

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 23

Processing text data with the Java IO API

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 24

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Processing text data
with the Java IO API

Text data: interpretation of
binary data

Different character encodings

Different end of line characters

Different IO classes for text
data

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 25

Ancestor of
character
representations:
ASCII

ASCII: 128 binary values

Mapping binary to
characters

Published in 1963 and
meant for English

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 26

Extended ASCII:
codes pages

Extended ASCII (code
pages)

Support for more
characters using the
remaining 128 values

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 27

Unicode

Unicode: solves ASCII
limitations

Standard to support all
languages

Different implementations:

UTF-8

UTF-16

UTF-32

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 28

UTF-8

UTF-8: variable-length
encoding

Most common Unicode
implementation

ASCII compatible

Quite the standard for web
and software development

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 29

What happens if you
ignore the character
encoding?

Not stored in the file itself

Misinterpretation leads to issues

Check, compile and run the
TextCharacterEncodingsExample

code example!

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 30

Reading and writing
text data

Reader and Writer classes are
used to read/write text data

Always specify the encoding!
If not set, it can be incompatible
with other systems

Let's have a look at the code
example
TextReadAndWriteFileExample

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 31

class TextReadAndWriteFileExample {

 public static void main(String[] args) throws IOException {
 Reader reader = new FileReader("file.java", StandardCharsets.UTF_8);
 Writer writer = new FileWriter("file.txt", StandardCharsets.UTF_8);

 // -1 indicates the end of the file
 int c;
 while ((c = reader.read()) != -1) {
 writer.write(c);
 }

 writer.close();
 reader.close();
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 32

Just like with binary data,
reading and writing text data
byte by byte is not efficient

BufferedReader and
BufferedWriter classes are

used to read/write text data
with buffers

Let's have a look at the code
example
TextBufferReadAndWriteFileExample

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 33

 public static void main(String[] args) throws IOException {
 Reader reader = new FileReader("TextReadAndWriteFileExample.java", StandardCharsets.UTF_8);
+ BufferedReader br = new BufferedReader(reader);
+
 Writer writer = new FileWriter("TextReadAndWriteFileExample.txt", StandardCharsets.UTF_8);
+ BufferedWriter bw = new BufferedWriter(writer);

 // -1 indicates the end of the file
 int c;
- while ((c = reader.read()) != -1) {
- writer.write(c);
+ while ((c = br.read()) != -1) {
+ bw.write(c);
 }

- writer.close();
- reader.close();
+ // Flush the buffer to write the remaining bytes
+ bw.flush();
+ bw.close();
+ br.close();
 }

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 34

End of line
characters

Different end of line
characters on different
systems

Unix/Linux/macOS: \n ,
called "Line feed" (LF)

Windows: \r\n , called
"Carriage Return + Line
feed" (CR + LF)

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 35

class TextEndOfLineCharactersExample {

 public static String END_OF_LINE = "\n";

 public static void main(String[] args) throws IOException {
 InputStream is = new FileInputStream("file.java");
 Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8);
 BufferedReader br = new BufferedReader(reader);

 OutputStream os = new FileOutputStream("file.txt");
 Writer writer = new OutputStreamWriter(os, StandardCharsets.UTF_8);
 BufferedWriter bw = new BufferedWriter(writer);

 String line;
 while ((line = br.readLine()) != null) {
 // Careful: line does not contain end of line characters
 bw.write(line + END_OF_LINE);
 }

 bw.flush();
 br.close();
 is.close();
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 36

Dealing with errors

All kinds of errors can occur when
reading/writing files

Files must be properly opened and
closed

Ensure no files are corrupted

Two main ways to handle
exceptions:

try-catch-finally blocks

try-with-resources blocks

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 37

// Bad example: try-catch without finally
public static void tryCatchWithoutFinallyExample() {
 try {
 Reader reader = new FileReader("missing.file");
 Writer writer = new FileWriter("missing.file");

 writer.write(reader.read());
 } catch (IOException e) {
 System.out.println("Exception: " + e);
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 38

// Better example: try-catch with finally
public static void tryCatchFinallyExample() {
 Reader reader = null;
 Writer writer = null;

 try {
 reader = new FileReader("missing.file");
 writer = new FileWriter("missing.file");

 writer.write(reader.read());
 } catch (IOException e) {
 System.out.println("Exception: " + e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException e) {
 System.out.println("Exception in close writer: " + e);
 }
 }

 if (reader != null) {
 try {
 reader.close();
 } catch (IOException e) {
 System.out.println("Exception in close reader: " + e);
 }
 }
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 39

// Best example: try-with-resources
public static void tryWithResourcesExample() {
 try (Reader reader = new FileReader("missing.file");
 Writer writer = new FileWriter("missing.file")) {
 writer.write(reader.read());
 } catch (IOException e) {
 System.out.println("Exception: " + e);
 }
}

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 40

When to use which IO?

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 41

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

When to use which IO?

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 42

Common pitfalls

More details for this section in the course material. You can find other
resources and alternatives as well.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 43

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Common pitfalls

Not using buffers

Not closing the streams

Not handling exceptions properly

Not specifying the character encoding

Not specifying the end of line characters

Do not use PrintWriter - it swallows exceptions

Do not use System.lineSeparator() - it is platform dependent

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 44

Questions

Do you have any questions?

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 45

Practical content

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 46

What will you do?

Benchmark the different types
of streams you have learned:

Assemble all the code
examples to satisfy the use-
cases

Run some benchmarks to
determine the best IOs for
the given use-cases

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 47

Find the practical
content

You can find the practical
content for this chapter on

GitHub.

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 48

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/05-java-ios/COURSE_MATERIAL.md

Finished? Was it easy? Was it hard?

Can you let us know what was easy and what was difficult for you
during this chapter?

This will help us to improve the course and adapt the content to your
needs. If we notice some difficulties, we will come back to you to help
you.

 GitHub Discussions

You can use reactions to express your opinion on a comment!

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 49

https://github.com/orgs/heig-vd-dai-course/discussions/4

What will you do next?

In the next chapter, you will learn the
following topics:

Docker and Docker Compose: how
to containerize your applications

What is an image?

What is a container?

How to try out new software
without installing it?

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 50

Sources

Main illustration by Martijn Baudoin on Unsplash

Illustration by Aline de Nadai on Unsplash

Illustration by T K on Unsplash

Illustration by Anna Dudkova on Unsplash

Illustration by Sigmund on Unsplash

HEIG-VD - DAI Course 2024-2025 - CC BY-SA 4.0 51

https://unsplash.com/@martijnbaudoin
https://unsplash.com/photos/4h0HqC3K4-c
https://unsplash.com/@alinedenadai
https://unsplash.com/photos/j6brni7fpvs
https://unsplash.com/@realaxer
https://unsplash.com/photos/9AxFJaNySB8
https://unsplash.com/@annadudkova
https://unsplash.com/photos/urs_y9NwFcc
https://unsplash.com/@sigmund
https://unsplash.com/photos/By-tZImt0Ms

