
Docker and Docker
Compose - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/06-docker-and-docker-compose/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/06-docker-and-docker-compose/06-docker-and-docker-compose-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

Prepare and setup your environment

Install Docker and Docker Compose

Check and run the code examples

Bare metal, virtualization and containerization

Bare metal

Virtualization

Containerization

OCI, images, containers and registries

Docker Hub

GitHub Container Registry

Alternatives

Resources

Docker

Dockerfile specification

Summary

Cheatsheet

Alternatives

Resources

Docker Compose

Docker Compose specification

Summary

Cheatsheet

Alternatives

Resources

Practical content

Package your own applications with Docker

Publish your own applications with Docker

Run your own applications with Docker and Docker Compose

Share your Docker Compose application

Go further

Conclusion

What did you do and learn?

•

•

•

•

•

•

•

•

•

2 Table of contents

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Solution

Optional content

Docker Compose v1 vs. Docker Compose v2

Security considerations

Free some space

Ignore files

Healthchecks

Multi-stage builds

Multi-architecture builds

Sources

•

•

•

•

•

•

3 Table of contents

Objectives

In this chapter, you will learn about the differences between bare metal,

virtualization and containerization.

You will learn how what the OCI specification is and how it defines images,

containers and registries.

You will then use Docker and Docker Compose to build, publish, and run

applications in containers without the need to install the software directly

on your computer.

4 Objectives

Prepare and setup your

environment

Install Docker and Docker Compose

In this section, you will install Docker and Docker Compose on your

computer.

Install Docker and Docker Compose on Linux and Windows (WSL)

Go to the official website and follow the instructions to install Docker

Engine on your distribution from the repository (not using Docker Desktop):

Debian: https://docs.docker.com/engine/install/debian/

Fedora: https://docs.docker.com/engine/install/fedora/

Ubuntu: https://docs.docker.com/engine/install/ubuntu/

Other distributions: https://docs.docker.com/engine/install/

Note

While it is possible to install Docker Desktop on Linux (not WSL), we would

not recommend it. It is better to install Docker Engine and Docker Compose

directly on your system to avoid any overhead.

Then, follow the post-installation steps to finalize the installation: https://

docs.docker.com/engine/install/linux-postinstall/ (steps "Manage Docker

as a non-root user" and "Configure Docker to start on boot with systemd").

Install Docker and Docker Compose on macOS

Go to the official website and follow the instructions on how to install

Docker Desktop on your system: https://docs.docker.com/desktop/.

This will install Docker Engine and Docker Compose in a virtual machine.

•

•

•

•

5 Prepare and setup your environment

https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/fedora/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/desktop/

Check the installation

Once Docker and Docker Compose are installed, you can check the

installation by running the following commands in a terminal:

The output should be similar to the following:

Ensure that the Docker daemon is running if you have any issue.

Check and run the code examples

In this section, you will clone the code examples repository to check and

run the code examples along with the theory.

Clone the repository

Clone the heig-vd-dai-course/heig-vd-dai-course-code-examples repository to get

the code examples.

Access the code examples in your terminal

Open a terminal and navigate to the heig-vd-dai-course-code-examples

directory.

Explore and run the code examples

In the 06-docker-and-docker-compose directory, check out the README.md file to

learn how to run the code examples.

You now have everything you need to run the code examples. Let's dive into

the theory!

Check the Docker version

docker --version

Check the Docker Compose version

docker compose version

Docker version 27.1.2, build d01f264

Docker Compose version v2.29.1

6 Prepare and setup your environment

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples

Bare metal, virtualization and

containerization

Bare metal, virtualization and containerization are three different ways to

run software on a computer (remember, a server is only a computer - the

"Cloud" is only someone else's computer).

A good way to understand the differences between bare metal,

virtualization and containerization is to watch the following video:

You can find this video in the Additional resources section for more

information.

7 Bare metal, virtualization and containerization

Bare metal

Bare metal is the traditional way to run software on a computer. The

software is installed directly on the computer. The software has access to all

the resources of the computer. This is the fastest and most straightforward

way to run software on a computer/server

Virtualization

Virtualization is another way to run software on a computer. The software is

installed in a virtual machine. The virtual machine is a virtual computer. The

virtual machine might have limited access to the resources of the

computer/server. The virtual machine is isolated from the rest of the

computer/server. This is a good way to run software when you want to

isolate the software from the rest of the computer/server.

Virtualization starts full operating systems. This is quite heavy. It takes time

to start a virtual machine. It also takes a lot of space and/or ressources on

the computer/server.

Containerization

Containerization is another way to run software on a computer/server. The

software is installed in a container. The container is a virtual environment.

A container is, however, much lighter than a virtual machine. It is (way)

faster to start than a virtual machine.

This is because a container shares the underlying operating system of the

computer/server. It starts only the software needed to run the application

but in a virtual environment that can also have limited access to the

resources of the computer/server.

8 Bare metal, virtualization and containerization

OCI, images, containers and

registries

The OCI specification defines a standard for container images. The OCI

specification is implemented by Docker, but also by other container engines.

The OCI specification defines the following terms (among others):

Image: a read-only template with instructions for creating a container

Container: a runnable instance of an image

Registry: a service that stores images

A container image is a package that contains everything needed to run an

application. It contains the application and all its dependencies. It also

contains metadata about the image, such as the author, the version, the

description, etc.

A container image is immutable. It cannot be modified. If you want to

modify a container image, you need to create a new image.

A container image is composed of layers. Each layer is a set of instructions/

files that specifies the container.

A container image is stored in a container registry. A container registry is a

service that stores container images. The most popular container registry is

Docker Hub.

A container image can be uploaded/downloaded to/from a container

registry.

A container image can be used to create a container. A container is a

runnable instance of an image.

Containers can be inherited from other containers.

A container is isolated from the rest of the computer as well as from other

containers. Access to the host system is restricted and must be explicitly

granted.

•

•

•

9 OCI, images, containers and registries

Docker Hub

Docker Hub is the world's largest library and community for container

images.

https://hub.docker.com

Docker Hub is a public container registry. It is the default registry for Docker.

Other container registries are available. Some are public (anyone can pull

your images), some are private (a username and password are required to

pull them).

GitHub Container Registry

The Container registry stores container images within your

organization or personal account, and allows you to associate an

image with a repository.

https://docs.github.com/en/packages/working-with-a-github-

packages-registry/working-with-the-container-registry

In this course, we will use the GitHub Container Registry to store your

images. It will allow to store your images in the same place as your code.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

GitLab Container Registry

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

None for now

Missing item in the list? Feel free to open a pull request to add it!

•

•

10 OCI, images, containers and registries

https://hub.docker.com
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.gitlab.com/ee/user/packages/container_registry/

Docker

Docker is a set of platform as a service (PaaS) products that use OS-

level virtualization to deliver software in packages called containers.

https://www.docker.com

Docker is composed of two parts:

The Docker daemon: a background service that manages containers

The Docker CLI: a command-line interface to interact with the Docker

daemon

On Linux, the Docker daemon runs natively. The Docker CLI communicates

with the Docker daemon through a socket.

On macOS and Windows, the Docker daemon runs in a virtual machine. The

Docker CLI communicates with the Docker daemon through a socket.

The Docker CLI is used to manage containers. It is used to create, start, stop,

restart, delete, etc. containers. It is also used to manage images. It is used

to download, upload, build, etc. images.

Let's start our first container!

Run the following command in a terminal:

The run command is used to run a container. It is followed by the name of

the image to use.

The hello-world image is an image often used to test if Docker is correctly

installed.

The :latest tag is used to specify the version of the image. It is not required.

If no tag is specified, the :latest tag is used by default.

The output should be similar to the following:

•

•

Run a container with the hello-world image

docker run hello-world:latest

11 Docker

https://www.docker.com

Congratulations! You have just run your first container!

Take some time to read the output. It explains what Docker did to run the

container. It confirms that Docker is correctly installed on your computer as

well.

Just as the output suggests, you can run other Linux containers with the

following commands:

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

c1ec31eb5944: Pull complete

Digest: sha256:53cc4d415d839c98be39331c948609b659ed725170ad2ca8eb36951288f81b75

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

Run an Ubuntu container

docker run --rm -it ubuntu /bin/bash

Run a Debian container

docker run --rm -it debian /bin/bash

12 Docker

As all these containers are (certainly) not on your computer yet, Docker will

download their images from the Docker Hub and will start them as

containers on your computer.

The --rm option is used to remove the container when it exits. It is not

required. If the container is not removed, it will be stopped but not deleted.

The -it option is used to run the container in interactive mode. It is used to

attach the container's standard input, standard output and standard error

to the terminal.

The /bin/bash and /bin/ash arguments is used to override the default

command of the container. The default command of the container is

defined in the Dockerfile of the image. You will learn more about this later.

Inside the container, you can run any command, just as you would on your

system: you can install software, modify files, etc. Each change you do will

be lost when the container is stopped.

To exit the container, you can type exit in the shell.

Dockerfile specification

The Dockerfile specification defines a standard for building Docker images.

The Dockerfile specification is implemented by Docker, but also by other

container engines.

The Dockerfile specification defines the following terms (among others):

Dockerfile: a text file that contains instructions for building a Docker

image

Build context: a directory that contains the files needed to build a

Docker image

Run a Fedora container

docker run --rm -it fedora /bin/bash

Run an Alpine container

docker run --rm -it alpine /bin/ash

•

•

13 Docker

The Dockerfile specification defines a set of instructions. Each instruction

corresponds to a command that can be run in a shell. The instructions are

executed in order. Each instruction creates a new layer in the image.

The Dockerfile specification defines the following instructions (among

others):

FROM: specifies the base image

ARG: specifies an argument to be passed to the build command

RUN: runs a command in the container

COPY: copies files from the build context to the container

CMD: specifies the command to run when the container starts

ENTRYPOINT: specifies the entry point of the container

ENV: specifies an environment variable

EXPOSE: specifies the port to expose

WORKDIR: specifies the working directory

VOLUME: specifies a volume

A Dockerfile is then used to build a Docker image. The Dockerfile is passed

to the docker build command. The docker build command builds the image

from the Dockerfile. The docker build command takes the Dockerfile and the

build context as arguments.

Once the image is built, it can be run with the docker run command. The

docker run command takes the image name as argument.

Most Docker images are based on Linux but others are available as well

(Windows for instance). It is possible to run Linux containers on Linux,

macOS and Windows (with the help of the Linux virtual machine).

More information about the Dockerfile specification can be found in the

official documentation: https://docs.docker.com/engine/reference/builder/.

Check the code examples to see how to write a Dockerfile and build a

Docker image.

Check all available examples for part 1 regarding Dockerfiles and carefully

read the README files to understand how to run them and what they do.

•

•

•

•

•

•

•

•

•

•

14 Docker

https://docs.docker.com/engine/reference/builder/

Summary

Docker is a container engine composed of two parts: the Docker

daemon and the Docker CLI:

The Docker CLI is used to manage containers and images

The Dockerfile specification defines a standard for building Docker

images

A Dockerfile is used to build a Docker image

A Docker image is used to create a container

A container is a runnable instance of an image

A container is isolated from the rest of the computer

Cheatsheet

•

•

•

•

•

•

•

Build and tag an image

docker build -t <image-name> <build-context>

Start a container using its image name

docker run <image-name>

Start a container in background

docker run -d <image-name>

Display all running containers

docker ps

Stop a container

docker stop <container-id>

Access a running container

docker exec -it <container-id> /bin/sh

Start a container and override the entry point

docker run --entrypoint /bin/sh <image-name>

Start a container and override the command

docker run <image-name> <command>

Delete all stopped containers

docker container prune

15 Docker

Alternatives

Alternatives are here for general knowledge. No need to learn them.

podman

containerd

LXC

Kubernetes

kaniko

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

Get started with Docker

Missing item in the list? Feel free to open a pull request to add it!

Delete all images

docker image prune

•

•

•

•

•

•

16 Docker

https://podman.io/
https://containerd.io/
https://linuxcontainers.org/lxc/introduction/
https://kubernetes.io/
https://github.com/GoogleContainerTools/kaniko
https://docs.docker.com/get-started/

Docker Compose

Docker Compose is a tool for defining and running multi-container

Docker applications.

https://docs.docker.com/compose/

Docker Compose is a tool that is used to run multiple containers. It is used

to run multiple containers that are related to each other. It is used to run

multiple containers that are part of the same application (a backend and its

database for example).

Docker Compose specification

The Docker Compose specification defines a standard for defining and

running multi-container Docker applications. The Docker Compose

specification is implemented by Docker, but also by other tools.

The Docker Compose specification defines the following terms (among

others):

Service: a container that is part of a multi-container Docker application

Volume: a directory that is shared between the container and the host

Network: a network that is shared between containers

Docker Compose allows to define a multi-container Docker application in a

Docker Compose file. It is easier to use than plain Docker commands and

can be versioned with the application.

The format of the Docker Compose file is YAML. The Docker Compose file is

named docker-compose.yml by convention.

More information about the Docker Compose specification can be found in

the official documentation: https://docs.docker.com/compose/compose-

file/.

Check the code examples to see how to run a Docker Compose file.

•

•

•

17 Docker Compose

https://docs.docker.com/compose/
https://yaml.org/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Check all available examples for part 1 regarding Docker Compose and

carefully read the README files to understand how to run them and what

they do.

Summary

Docker Compose allows to define a multi-container Docker application

in a Docker Compose file

A Docker Compose file can consist of a set of services, volumes and

networks

A Docker Compose file (docker-compose.yml) can be easily shared and

versioned with the application

Docker Compose v2 is the recommended version to use

Cheatsheet

•

•

•

•

Start all services defined in the docker-compose.yml file

docker compose up

Start all services defined in the docker-compose.yml file in background

docker compose up -d

Display all running services

docker compose ps

Stop all services defined in the docker-compose.yml file

docker compose down

Check the logs of a service

docker compose logs <service-name>

Check the logs of all services defined in the docker-compose.yml file

docker compose logs

Follow the logs of a service

docker compose logs -f <service-name>

18 Docker Compose

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Docker Swarm

Kubernetes

Nomad

Rancher

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

None for now

Missing item in the list? Feel free to open a pull request to add it!

•

•

•

•

•

19 Docker Compose

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://www.nomadproject.io/
https://rancher.com/

Practical content

In this practical content, you will learn how to package, publish and run

your own applications with Docker and Docker Compose.

You will need the output (the JAR file) of the practical content from chapter

Java IOs.

If you do not have the output of the practical content from chapter Java IOs,

you can use the solution mentioned in the Java IOs chapter. Clone and

compile the solution to have the output for this practical content.

Package your own applications with Docker

In this section, you will package your own applications with Docker.

You will write a Dockerfile, build it with a tag and run it with Docker.

Using all the elements you have learned so far, create a Dockerfile that will

run the JAR file you have from the Java IOs chapter.

You can create a new file named "Dockerfile" (without any extension) at the

root level of the Java IOs project as a starting point:

The base image is the eclipse-temurin:21-jre image. It is an image that contains

the Java 21 Runtime Environment (JRE) to run Java applications with the help

of the java command.

Note

Take some time to write the Dockerfile file. It is important to understand

each instruction and what it does.

You can find the solution in the Solution section if needed.

Once the Dockerfile has been written, you can build the image with the

following command:

Base image

FROM eclipse-temurin:21-jre

20 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/05-java-ios

Validate that the image has been built correctly by running the following

commands:

Notice how the volume /data is mounted to the container to read and write

files from the host system. It allows to persist the files between container

runs as each run is isolated.

Congrats! You have just packaged your own application with Docker!

Publish your own applications with Docker

In this section, you will publish your own applications with Docker to the

GitHub Container Registry.

It will allow you to share your images with others.

Create a personal access token

You will need a personal access token to publish an image on GitHub

Container Registry.

A personal access token is a token that you can use to authenticate to

GitHub instead of using your password. It is more secure than using your

password.

Build the image with the java-ios-docker tag

docker build -t java-ios-docker .

Write a 100-bytes.bin file to /data/100-bytes.bin

docker run --rm -v "$(pwd):/data" java-ios-docker \

--implementation BUFFERED_BINARY \

 /data/100-bytes.bin \

 write \

--size 100

Read the 100-bytes.bin file from /data/100-bytes.bin

docker run --rm -v "$(pwd):/data" java-ios-docker \

--implementation BUFFERED_BINARY \

 /data/100-bytes.bin \

 read

21 Practical content

Follow the instructions on the official website to authenticate with a

personal access token (classic): https://docs.github.com/en/packages/

working-with-a-github-packages-registry/working-with-the-container-

registry.

Note

You can find the personal access token in the settings of your GitHub

account: Settings > Developer settings (at the very end of the left side bar)

> Personal access tokens > Tokens (classic).

Login to GitHub Container Registry

Login to GitHub Container Registry with the following command, replacing

<username> with your GitHub username:

When asked for the password, use the personal access token you created

earlier.

The output should be similar to the following:

Tag the image correctly for GitHub Container Registry

The image must be tagged with the following format: ghcr.io/<username>/

<image>:<tag>.

Run the following command to tag the image with the correct format,

replacing <username> with your GitHub username:

You can list all the images with the following command:

The output should be similar to the following:

Login to GitHub Container Registry

docker login ghcr.io -u <username>

Login Succeeded

Tag the image with the correct format

docker tag java-ios-docker ghcr.io/<username>/java-ios-docker:latest

List all the images

docker images

22 Practical content

https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry

You can delete the local java-ios-docker image with the following command:

Publish the image on GitHub Container Registry

Now publish the image on GitHub Container Registry with the following

command, replacing <username> with your GitHub username:

The output should be similar to the following:

You can now go to the GitHub Container Registry page of your repository to

check that the image has been published, replacing <username> with your

GitHub username: https://github.com/<username>?tab=packages, as shown in the

following screenshot:

REPOSITORY TAG IMAGE ID

CREATED SIZE

java-ios-docker latest 8214c1a1c97c 3

minutes ago 282MB

ghcr.io/ludelafo/java-ios-docker latest

8214c1a1c97c 3 minutes ago 282MB

Delete java-ios-docker image

docker rmi java-ios-docker

Publish the image on GitHub Container Registry

docker push ghcr.io/<username>/java-ios-docker

The push refers to repository [ghcr.io/ludelafo/java-ios-docker]

130abe5d3a5e: Pushed

90ab30cf733e: Pushed

6cc5022303de: Pushed

750416b760e2: Pushed

f975d1357d1a: Pushed

0bf35e9086dc: Pushed

f36fd4bb7334: Pushed

latest: digest:

sha256:d0d83a97c4522ddbeb8968e9d509fdebecf0450ca1651c13c14ca774f01e8675 size: 1784

23 Practical content

As you can notice, the image is private by default. You can change the

visibility of the image in the settings of the image.

You can keep your images private if you want. Just be aware that you will

need to authenticate to GitHub Container Registry to pull the image.

You can delete the local image if you want.

Congrats! You have just published your first image on GitHub Container

Registry!

24 Practical content

Run your own applications with Docker and Docker Compose

In this section, you will use the published image with Docker and Docker

Compose

Pull the image from GitHub Container Registry

Run the following command to pull the image from GitHub Container

Registry, replacing <username> with your GitHub username:

The output should be similar to the following if you have deleted the ghcr.io/

<username>/java-ios-docker image locally:

Run the image with Docker

Running the image with Docker is pretty straightforward. You just need to

run the following command to run the image with Docker, replacing

<username> with your GitHub username:

Pull the image from GitHub Container Registry

docker pull ghcr.io/<username>/java-ios-docker

Using default tag: latest

latest: Pulling from ludelafo/java-ios-docker

eb993dcd6942: Already exists

62ad162d7203: Already exists

4577d4ade6f1: Already exists

4670d85c19d4: Already exists

86ec1c7b50a4: Already exists

38a1672e662b: Already exists

ed73061654ac: Already exists

Digest: sha256:d0d83a97c4522ddbeb8968e9d509fdebecf0450ca1651c13c14ca774f01e8675

Status: Downloaded newer image for ghcr.io/ludelafo/java-ios-docker:latest

ghcr.io/ludelafo/java-ios-docker:latest

Write a 100-bytes.bin file to /data/100-bytes.bin

docker run --rm -v "$(pwd):/data" ghcr.io/<username>/java-ios-docker \

--implementation BUFFERED_BINARY \

 /data/100-bytes.bin \

 write \

--size 100

25 Practical content

The results will be the same as when you ran the image locally but this time

with the image pulled from GitHub Container Registry.

Run the image with Docker Compose

In this section, you will run the same container with Docker Compose.

You will write a Docker Compose file that will run the image you have

published on GitHub Container Registry.

Using all the elements you have learned so far, create a Docker Compose

file that will run the image you have published on GitHub Container Registry

with two services:

writer: a service that will write a 100-bytes.bin file from the /data volume

reader: a service that will read the 100-bytes.bin file from the /data

volume

Note

Take some time to write the Docker Compose file. It is important to

understand each instruction and what it does.

You can find the solution in the Solution section if needed.

Once the Docker Compose file has been written, you can run the image with

the following command:

Read the 100-bytes.bin file from /data/100-bytes.bin

docker run --rm -v "$(pwd):/data" ghcr.io/<username>/java-ios-docker \

--implementation BUFFERED_BINARY \

 /data/100-bytes.bin \

 read

•

•

Write a 100-bytes.bin file to /data/100-bytes.bin

docker compose up writer

Read the 100-bytes.bin file from /data/100-bytes.bin

docker compose up reader

26 Practical content

Share your Docker Compose application

Create a new Git repository and push your code to it.

Share your Docker Compose application in the GitHub Discussions of this

organization: https://github.com/orgs/heig-vd-dai-course/discussions.

Create a new discussion with the following information:

Title: DAI 2024-2025 - My Docker Compose application - First name Last

Name

Category: Show and tell

Description: The link to your GitHub repository with a screenshot of

your Docker image published on GitHub Container Registry

This will notify us that you have completed the exercise and we can check

your work.

You can compare your solution with the official one stated in the Solution

section, however, we highly recommend you to try to complete the practical

content by yourself first to learn the most.

Go further

This is an optional section. Feel free to skip it if you do not have time.

Are you able to use environment variables in your Docker Compose file

to specify the implementation to use and the size of the file to write? As

it requires a few tricks, here are some tips:

You need to define a new entrypoint to use a shell (like /bin/bash) to

run the Java application with the environment variables

You need to define a new command in order to invoke the Java

application with the environment variables with the -c option of the

shell (to run a command in the shell)

In order to escape the environment variables in the command, you

can use the $$ syntax

You need to define the environment variables in the Docker

Compose file with the environment instruction

•

•

•

•

27 Practical content

https://github.com/orgs/heig-vd-dai-course/discussions

Conclusion

What did you do and learn?

In this chapter, you have installed Docker and Docker Compose. You have

learned the basics of Docker and Docker Compose and you have used them

to build, publish, and run a Docker image.

Using Docker and Docker Compose, you have been able to run applications

without the need to install the software directly on your computer.

Docker and Docker Compose are very powerful tools. They are used by a lot

of companies to build and run their applications in production on different

environments.

Test your knowledge

At this point, you should be able to answer the following questions:

What is the difference between an image and a container?

What is the difference between a Dockerfile and a Docker Compose file?

What is the difference between the ENTRYPOINT and CMD instructions?

What is the difference between the RUN and CMD instructions?

How can a volume be used to persist data?

•

•

•

•

•

28 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

29 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/113

What will you do next?

We are arriving at the end of the first part of the course. An evaluation will

be done to check your understanding of all the content seen in this first

part.

30 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

"Big Misconceptions about Bare Metal, Virtual Machines, and

Containers" by ByteByteGo

Missing item in the list? Feel free to open a pull request to add it!

•

31 Additional resources

https://www.youtube.com/watch?v=Jz8Gs4UHTO8
https://www.youtube.com/watch?v=Jz8Gs4UHTO8
https://www.youtube.com/watch?v=Jz8Gs4UHTO8
https://www.youtube.com/watch?v=Jz8Gs4UHTO8

Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

32 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions

Optional content

The following content is optional. It is here to help you and for your general

knowledge.

Docker Compose v1 vs. Docker Compose v2

Please be aware that there are two versions of Docker Compose: Docker

Compose v1 and Docker Compose v2.

Docker Compose v1 is the original version of Docker Compose. It was built

with Python and is now deprecated. It is still available but it is not

recommended to use it. The command to use Docker Compose v1 was

docker-compose.

Docker Compose v2 is the new version of Docker Compose. It is built with Go

and it is the recommended version to use. The new command to use Docker

Compose v2 is docker compose.

Security considerations

A container is isolated from the rest of the computer. It is isolated from

other containers. It is not isolated from the Docker daemon. The Docker

daemon has access to the container.

A container is not a virtual machine. It is not a sandbox. It is not a security

boundary. It is not a security boundary between the container and the

Docker daemon.

The Docker daemon runs with root privileges. You must be careful when

running containers. A security vulnerability in a container can lead to a full

compromise of the host. Always try to run containers with a non-root user.

It is not always possible to run a container with a non-root user. Some

containers require root privileges to run. Some containers requires access

to the Docker daemon. This is usually explicitly stated in the documentation

of the container.

33 Optional content

Free some space

Docker images, containers and volumes can take a lot of space on your

computer.

You can use the following commands to free some space:

Ignore files

When building an image, Docker will send the build context to the Docker

daemon.

The build context is the directory that contains the Dockerfile. To ignore

files that are not needed to build the image, you can create a .dockerignore

file in the build context. The .dockerignore file is similar to the .gitignore file.

This can be useful to ignore files such as the target directory of a Maven

project or private keys so that they are not sent to the Docker daemon.

Healthchecks

Healthchecks are used to check if a container is healthy. They are used to

check if the container is ready to accept requests.

Healthchecks are defined in the Dockerfile. They are defined with the

HEALTHCHECK instruction.

The HEALTHCHECK instruction takes the following arguments:

--interval: the interval between two healthchecks

--timeout: the timeout of a healthcheck

--start-period: the time to wait before starting the healthchecks

--retries: the number of retries before considering the container

unhealthy

CMD: the command to run to check the health of the container

For example, the following instruction defines a healthcheck that runs every

30 seconds and that times out after 10 seconds:

Delete all stopped containers, all networks not used by at least one container, all
anonymous volumes not used by at least one container, all images without at
least one container associated to them and all build cache

docker system prune --all --volumes

•

•

•

•

•

34 Optional content

If no healthcheck is defined, Docker will use the default healthcheck. The

default healthcheck is to check if the container is running.

If no healthcheck is defined, the container will be considered healthy as

soon as it is running. This is not always what you want. You might want to

wait for the container to be ready to accept requests.

You can define a healthcheck directly in the Docker Compose file with the

healthcheck option. It will then check the health of the container on startup.

For example, the following option defines a healthcheck that runs every 30

seconds and that times out after 10 seconds:

Multi-stage builds

When working with Docker, you usually start with a base image and you do

the following:

Install the dependencies of your application.

Copy your application source to the image.

Build the application.

Run it.

This process creates a large image. It contains the base image, the

dependencies, the source code and the build tools, even if they are not

needed anymore.

You can use multi-stage builds to reduce the size of the final image. The

process would be as follow:

Start from a base image named builder.

Install the dependencies to build your application.

Copy your application source to the image.

Build the application.

Start from a base image named runner.

HEALTHCHECK --interval=30s --timeout=10s \

CMD curl -f http://localhost/ || exit 1

healthcheck:

test: ["CMD", "curl", "-f", "http://localhost/"]

interval: 30s

timeout: 10s

1.

2.

3.

4.

1.

2.

3.

4.

5.

35 Optional content

Install the dependencies to run your application (if needed).

Copy the build artifacts from the builder image to the runner image.

Run the application.

The final image will only contain the dependencies to run your application

and the build artifacts. It will not contain the build tools, the source code or

the dependencies to build your application, reducing significantly the size

of the image.

This topic will not be covered in this course. You can however find more

information about multi-stage builds in the official documentation: https://

docs.docker.com/develop/develop-images/multistage-build/.

Multi-architecture builds

By default, Docker will use the architecture of your computer. If you are

using a computer with an amd64 architecture, Docker will use the amd64

version of the image.

You can use multi-architecture builds to build images for multiple

architectures, such as amd64, arm64 and armv7. You can then publish the

images on a registry. When you will pull the image, Docker will

automatically use the version that matches the architecture of your

computer, making your application compatible with multiple architectures.

This topic will not be covered in this course. You can however find more

information about multi-architecture builds in the official documentation:

https://docs.docker.com/build/building/multi-platform/.

6.

7.

8.

36 Optional content

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/build/building/multi-platform/

Sources

Main illustration by CHUTTERSNAP on Unsplash•

37 Sources

https://unsplash.com/@chuttersnap
https://unsplash.com/photos/xewrfLD8emE

	Docker and Docker Compose - Course material
	Table of contents
	Objectives
	Prepare and setup your environment
	Install Docker and Docker Compose
	Install Docker and Docker Compose on Linux and Windows (WSL)
	Install Docker and Docker Compose on macOS
	Check the installation

	Check and run the code examples
	Clone the repository
	Access the code examples in your terminal
	Explore and run the code examples

	Bare metal, virtualization and containerization
	Bare metal
	Virtualization
	Containerization

	OCI, images, containers and registries
	Docker Hub
	GitHub Container Registry
	Alternatives
	Resources

	Docker
	Dockerfile specification
	Summary
	Cheatsheet
	Alternatives
	Resources

	Docker Compose
	Docker Compose specification
	Summary
	Cheatsheet
	Alternatives
	Resources

	Practical content
	Package your own applications with Docker
	Publish your own applications with Docker
	Create a personal access token
	Login to GitHub Container Registry
	Tag the image correctly for GitHub Container Registry
	Publish the image on GitHub Container Registry

	Run your own applications with Docker and Docker Compose
	Pull the image from GitHub Container Registry
	Run the image with Docker
	Run the image with Docker Compose

	Share your Docker Compose application
	Go further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Optional content
	Docker Compose v1 vs. Docker Compose v2
	Security considerations
	Free some space
	Ignore files
	Healthchecks
	Multi-stage builds
	Multi-architecture builds

	Sources

