
Practical work 1
https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/07-practical-work-1/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/07-practical-work-1/07-practical-work-1-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Introduction

Objectives

Group composition

Idea validation

Grading criteria

Category 1 - Meta

Category 2 - Git, GitHub and Markdown

Category 3 - Java, IntelliJ IDEA and Maven

Category 4 - Java IOs

Category 5 - Presentation and questions

Constraints

Tips

The Unix philosophy and the KISS principle

External dependencies

Add members to your repository

Protect your main branch

Submission

Presentations

DAI-TIC-B (Monday mornings)

DAI-TIC-C (Friday mornings)

Grades and feedback

Finished? Was it easy? Was it hard?

Sources

•

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Introduction

We use command line interface (CLI) tools every day. For example, we use

Git to manage our code (with its git command line interface), Maven to build

our projects (with its mvn and mvnw command line interface), Java to run our

programs (with its javac and java command line interface), etc.

In this practical work, you will create a CLI using picocli to process files.

The CLI will take an input file and an output file as arguments. It will also

take optional arguments to customize the CLI (such as the input file

encoding and the output file encoding - the default being UTF-8 for

example). The CLI will process the input file and write the result in the

output file. It will display a message on success and a message on failure.

You have the freedom to define what the CLI will do. You can be creative!

For example, you can choose to transform a text file (find/replace/count

number of occurrences/etc.), to grayscale a JPEG/PNG binary file

manipulating its pixel values, add metadata to existing TIFF files, etc.

Multiple groups can choose the same processing and you can share your

methodology and take inspiration from/help each other. However, you are

not allowed to plagiarize the code of another group. You will be penalized if

you do so with 1 as the final grade.

3 Introduction

https://picocli.info/

Objectives

Create a CLI to process files with Java IOs

Practice Java, Maven and picocli

Practice a Git workflow to share your work with your team

•

•

•

4 Objectives

https://picocli.info/

Group composition

You will work in groups of two students. You can choose your partner. If you

do not have a partner, we will assign you one.

To announce your group, create a new GitHub Discussion at https://

github.com/orgs/heig-vd-dai-course/discussions with the following

information:

Title: DAI 2024-2025 - Practical work 1 - First name Last name member 1

and First name Last name member 2

Category: Show and tell

Description: A quick description of what you will achieve during this

practical work

Important

Please do it a soon as possible, even if you do not have a clear idea yet as

it will help us to plan the practical work presentations.

Please refer to the grading criteria to know what is expected from you.

•

•

•

5 Group composition

https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions

Idea validation

The teaching staff might ask you to change the scope of your practical work

if it is too complex or too simple.

This will ensure that you have a good balance between the complexity of

the practical work and the time you have to complete it.

If you do not have any idea, come to see us and we can help you finding

some ideas.

6 Idea validation

Grading criteria

0 point - The work is insufficient

0.1 point - The work is done

0.2 point - The work is well done (without the need of being perfect)

Maximum grade: 25 points * 0.2 + 1 = 6

Category 1 - Meta

Criterion Points

1
The whole team contributes to the project and can explain it

in details to share knowledge between the team
0.2

2

A GitHub Discussion is opened during the first week of the

project to explain the idea of the project so the teachers can

validate the idea

0.2

3

The GitHub Discussion is updated with the link to the

repository and a related commit hash before the deadline -

every 24 hours after the deadline will result in a -1 point

penalty on the final grade

0.2

Category 2 - Git, GitHub and Markdown

Criterion Points

4
Issues are created all along the project to describe new

features, elements to improve, etc. to plan work
0.2

5

Pull requests linked to the Issues are created, discussed and

reviewed all along the project to integrate new work

iteratively

0.2

6

The issue, pull request and commit messages are

descriptive so a new comer can understand what has been

done

0.2

7 0.2

•

•

•

7 Grading criteria

Criterion Points

The commits are signed to increase the security and the

confidence of the project

8

The repository contains a gitignore file to ignore all

unwanted files (Maven output, IntelliJ IDEA files related to

local computer, etc.) to keep the repository clean/small and

to avoid security leaks

0.2

9
The README is well structured and explains the purpose of

your application so new users can understand it
0.2

10

The README explains how to use your application with

examples and outputs so a new user/developer can

understand your application without having to run it locally

0.2

11

The README describes explicit commands to clone and

build your application with Git and Maven so new

developers can start and develop your project on their own

computer

0.2

12

The repository contains meaningful example files to allow

new users/developers (such as the teaching staff) to try out

your application locally - these files can be the same as the

ones used in the examples and outputs snippets

0.2

Category 3 - Java, IntelliJ IDEA and Maven

Criterion Points

13

The codebase is well structured, easy to access, easy to

understand and is documented so it is easier for new

comers to understand the codebase

0.2

14

The codebase contains the two IntelliJ IDEA configuration

files ("Run the application" and "Package application as JAR

file") so developers can run and build the application within

their IDE

0.2

15

The codebase contains the Maven wrapper configuration file

and scripts so developers can build the application without

an IDE and without having to install Maven

0.2

16 0.2

8 Grading criteria

Criterion Points

The codebase is built with Maven and outputs an executable

JAR file so the application can be ran everywhere Java is

installed

Category 4 - Java IOs

Criterion Points

17

The CLI displays a comprehensive help message on how to

use the application and displays errors on invalid/missing

inputs and/or processing errors

0.2

18
The CLI takes some mandatory arguments and other

optional arguments for customization
0.2

19 The CLI processes the files efficiently 0.2

20
The CLI processes the files so that they are compatible

across operating systems/languages
0.2

21
The CLI correctly manages resources in case a problem

occurs when processing the files
0.2

22
The CLI correctly processes the input file and writes the

result in the output file with its execution time
0.2

Category 5 - Presentation and questions

Criterion Points

23

The application is presented and a demo is made as you

would do it to a colleague/another team/boss/client/

investor so they can understand what you created, why and

how

0.2

24
The presentation is clear and well prepared - everyone

speaks during the presentation
0.2

25 The answers to the questions are correct 0.2

9 Grading criteria

Constraints

The application must be written in Java, compatible with Java 21

The application must be built using Maven with the maven-shade-plugin

plugin

The application must use the picocli dependency

You can only use the Java classes seen in the course to process the files

(you can use other libraries to help you once the files are opened) - See

the External dependencies section

Your application must be slightly more complex and slightly different

than the examples presented during the course (we emphasize the word

slightly, no need to shoot for the moon!)

•

•

•

•

•

10 Constraints

Tips

The Unix philosophy and the KISS principle

The Unix philosophy, originated by Ken Thompson, is a set of cultural

norms and philosophical approaches to minimalist, modular software

development. It is based on the experience of leading developers of

the Unix operating system.

https://en.wikipedia.org/wiki/Unix_philosophy

The Unix philosophy is a set of rules that defines how Unix programs should

be designed. It is used to define the Unix operating system and the

programs that are used on this operating system.

The Unix philosophy can be defined by the following rules, among others:

Write programs that do one thing and do it well.

Write programs to work together.

Write programs to handle text streams, because that is a universal

interface.

You can inspire yourself from the Unix philosophy to define your own

applications.

The KISS principle summarizes the Unix philosophy in a simple sentence:

Keep it simple, silly!

Sometimes it is better to use a simple solution than a complex one.

If your implementation is too complex, we might penalize you.

External dependencies

You can use any other dependencies you want in your Maven project. You

must however explain why and how you use it in your README.

As mentioned in the Constraints section, you cannot use an external

dependency that manages the files for you (open/close).

•

•

•

11 Tips

https://en.wikipedia.org/wiki/Unix_philosophy

Add members to your repository

You can add your team members to your repository as collaborators to

allow them to push directly to the repository.

Protect your main branch

You can protect the main branch of your repository to prevent any push on it

and force signed commits from team members. This will force all team

members to use signed pull requests to merge your work.

You can check the official documentation to know how to protect your main

branch on GitHub: https://docs.github.com/en/repositories/configuring-

branches-and-merges-in-your-repository/managing-protected-branches/

managing-a-branch-protection-rule.

12 Tips

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule

Submission

Your work is due as follow:

DAI-TIC-C (Friday mornings): 17.10.2024 23:59

DAI-TIC-B (Monday mornings): 20.10.2024 23:59

Caution

Each day of delay will result in a penalty of -1 point on the final grade.

You must update the GitHub Discussion you created previously with the

following information:

Description: The link to your repository as well as the commit hash you

want to submit

Caution

If you do not update the GitHub Discussion with the link to your repository

and the commit hash before the deadline, it is considered as a late

submission and you will be penalized.

•

•

•

13 Submission

Presentations

The practical work presentations will take place in room B51a (next to the

stairs) on:

DAI-TIC-C (Friday mornings): 18.10.2024 8:30-10:25

DAI-TIC-B (Monday mornings): 28.10.2024 8:30-10:25

We only have 6 minutes per group. You decide what you want to show us

and how you want to present it.

Come 5 minutes before your time slot (mentioned in the presentation) with

your computer. You will have access to a video projector.

Please state your group on GitHub Discussions before next week. This will

allow us to prepare the order of presentation.

The order of presentation is random and is stated in the next tables:

DAI-TIC-B (Monday mornings)

DAI-TIC-C (Friday mornings)

DAI-TIC-B (Monday mornings)

Group Passage

1 Alex Berberat and Lisa Gorgerat 08:40

2 Axel Pittet and Adam Gruber 08:46

3 Mário André Rocha Ferreira and Kénan Augsburger 08:52

4 Mathieu Emery and Tristan Baud 08:58

5 David Schildböck and Arno Tribolet 09:04

6 Basile Buxtorf and Dorian Kury 09:10

7 Leonard Cseres and Aude Laydu 09:16

8 Pierric Ripoll, Victor Nicolet and Colin Moschard 09:22

9 Nicolas Carbonara and Léon Surbeck 09:28

10 Florian Chollet and Alexandre Delétraz 09:34

•

•

•

•

14 Presentations

Group Passage

11 Emily Baquerizo and Kimberly Beyeler 09:40

12 Nils Donatantonio and Mathéo Lopez 09:46

13 Nathan Wulliamoz and Benjamin Kocher 09:52

14 Antoine Leresche and Robin Forestier 09:58

15 Nathan Parisod and Maxime Lestiboudois 10:04

16 Rothen Evan and Thiebaud Jonathan 10:10

17 Drin Racaj and Esteban Giorgis 10:16

DAI-TIC-C (Friday mornings)

Group Passage

1 Gianni Cecchetto and Nathan Tschantz 08:40

2 Guillaume Fragnière and Killian Viquerat 08:46

3 Rodrigo Lopes Dos Santos and Urs Behrmann 08:52

4 Dani Tiago Faria dos Santos and Nicolas Duprat 08:58

5 Pedro Alves da Silva and Gonçalo Carvalheiro Heleno 09:04

6 Thomas Stäheli and Thirusan Rajadurai 09:10

7 Ali Zoubir and Léonard Jouve 09:16

8 Sara Camassa and David Berger 09:22

9 Dylan Langumier and Raphaël Perret 09:28

10 Mathieu Rabot and Florian Duruz 09:34

11 Jacobs Arthur and Iseni Aladin 09:40

12 Kilian Froidevaux and Nicolas Bovard 09:46

13 Yoann Changanaqui and Camille Theubet 09:52

14 Louis Haye and Zaïd Schouwey 09:58

15 Antoine Aubry? 10:04

15 Presentations

Grades and feedback

Grades will be entered into GAPS, followed by an email with the feedback.

The evaluation will use exactly the same grading grid as shown in the

course material.

Each criterion will be accompanied by a comment explaining the points

obtained, a general comment on your work and the final grade.

If you have any questions about the evaluation, you can contact us!

16 Grades and feedback

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this practical work?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

17 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/5

Sources

Main illustration by Birmingham Museums Trust on Unsplash•

18 Sources

https://unsplash.com/@birminghammuseumstrust
https://unsplash.com/photos/ScZwMqoxcls

	Practical work 1
	Table of contents
	Introduction
	Objectives
	Group composition
	Idea validation
	Grading criteria
	Category 1 - Meta
	Category 2 - Git, GitHub and Markdown
	Category 3 - Java, IntelliJ IDEA and Maven
	Category 4 - Java IOs
	Category 5 - Presentation and questions

	Constraints
	Tips
	The Unix philosophy and the KISS principle
	External dependencies
	Add members to your repository
	Protect your main branch

	Submission
	Presentations
	DAI-TIC-B (Monday mornings)
	DAI-TIC-C (Friday mornings)

	Grades and feedback
	Finished? Was it easy? Was it hard?
	Sources

