
Java TCP programming
- Course material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/12-java-tcp-programming/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/12-java-tcp-programming/12-java-tcp-programming-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

Explore the code examples

TCP

The Socket API

Client/server common methods

Client workflow and methods

Server structure and methods

Processing data from streams

Variable length data

Read-eval-print loop (REPL)

Practical content

Execute the code examples

Update your application protocol

Try to access the server from multiple clients at the same time

Explore the Java TCP programming template

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Solution

Sources

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Objectives

As you have seen in previous chapters, applications communicate with each

other using application protocols.

In this chapter, you will learn how to program your own TCP clients and

servers in Java.

This will allow you to create your own network applications, such as a chat

server, a file server, a web server, etc.

3 Objectives

Explore the code examples

Individually, or in pair/group, take 10 minutes to explore and discuss the

code examples provided in the heig-vd-dai-course/heig-vd-dai-course-code-

examples repository. Clone it or pull the latest changes to get the code

examples.

The code examples are located in the 12-java-tcp-programming directory.

Try to answer the following questions:

How do the code examples work?

What are the main takeaways of the code examples?

What are the main differences between the code examples?

You can use the following theoretical content to help you.

•

•

•

4 Explore the code examples

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples

TCP

TCP is a transport protocol. It is used to transfer data between two

applications.

TCP is a connection-oriented protocol: a connection must be established

between the two applications before data can be exchanged in a

bidirectional way.

TCP can only do unicast: one application can only communicate with one

other application at the same time.

It is considered as a reliable protocol as data sent is guaranteed to be

received by the other application.

A good analogy is to think of TCP as a phone call: you must first establish a

connection with the other person before you can talk to them. Once the

connection is established, you can talk to the other person and they will

hear everything you say. If they did not hear you well, you can repeat what

you said until they hear you. They can, of course, also talk to you.

TCP is a stream-oriented protocol: data is sent as a stream of bytes. The

application must split the data into segments. Each segment is identified by

a sequence number.

TCP segments are encapsulated in IP packets, called payloads.

Thanks to the sequence numbers, TCP is able to reassemble the segments

in the correct order. If a segment is lost, TCP will retransmit it.

5 TCP

The Socket API

The Socket API is a Java API that allows you to create TCP clients and

servers. It is described in the java.net package in the java.base module.

It has originally been developed in C in the context of the Unix operating

system by Berkeley University. It has been ported to Java and is now

available on many platform and languages.

To make it simple, a socket is just like a file that you can open, read from,

write to and close. To exchange data, sockets on both sides must be

connected. The processing is the same as with files, seen in the Java IOs

chapter.

A socket is identified by an IP address and a port number.

A socket can act as a client or as a server:

A socket accepting connections is called a server socket (class

ServerSocket).

A socket initiating a connection is called a client socket (class Socket).

The following schema shows the workflow of a client/server application:

•

•

6 The Socket API

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/module-summary.html
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/05-java-ios
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/05-java-ios
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/ServerSocket.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/ServerSocket.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/Socket.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/Socket.html

Client/server common methods

Operation Description

socket() Creates a new socket

getInputStream() Gets the input stream of a socket

getOutputStream() Gets the output stream of a socket

close() Closes a socket

Client workflow and methods

In order to create a client, the following workflow is followed:

Create a socket (class Socket)

Connect the socket to an IP address and a port number

Read and write data from/to the socket

Flush and close the socket

1.

2.

3.

4.

7 The Socket API

The available methods are the following:

Operation Description

connect() Connects a socket to an IP address and a port number

Server structure and methods

In order to create a server, the following workflow is followed:

Create a socket (class ServerSocket)

Bind the socket to an IP address and a port number

Listen for incoming connections

Loop

Accept an incoming connection - creates a new socket (class

Socket) on a random port number

Read and write data from/to the socket

Flush and close the socket

Close the socket (ServerSocket)

The available methods are the following:

Operation Description

bind() Binds a socket to an IP address and a port number

listen() Listens for incoming connections

accept() Accepts an incoming connection

1.

2.

3.

4.

1.

2.

3.

5.

8 The Socket API

Processing data from streams

Sockets use data streams to send and receive data, just like files.

You get an input stream to read data from a socket and an output stream to

write data to a socket.

You can then decorate the input and output streams with other streams to

process the data, just as with IOs.

Use buffered streams to improve performance:

Important

Do not forget to flush the output stream after writing data to it. Otherwise,

the remaining data in the buffer will not be sent to the other application!

Also, do not forget all the good practices seen in the Java IOs chapter

(encoding, buffering, etc.). They must be applied here too!

// Get input stream

input = socket.getInputStream();

// Get output stream

output = socket.getOutputStream();

// Get input stream as text

input = new InputStreamReader(socket.getInputStream(), StandardCharsets.UTF_8);

// Get output stream as text

output = new OutputStreamWriter(socket.getOutputStream(), StandardCharsets.UTF_8);

// Get input stream as binary with buffer

input = new BufferedReader(new InputStreamReader(socket.getInputStream());

// Get output stream as binary with buffer

output = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream());

out.flush();

9 Processing data from streams

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/05-java-ios

Variable length data

Depending on the application protocol, the data sent can have a variable

length.

There are two ways to handle variable length data:

Use a delimiter

Use a fixed length

If the data has a delimiter, you can use a buffered reader to read the data

until the delimiter is found.

If the data has a fixed length, you must send the length of the data before

sending the data itself.

•

•

// End of transmission character

String EOT = "\u0004";

// Read data until the delimiter is found

String line;

while ((line = in.readLine()) != null && !line.equals(EOT)) {

System.out.println(

"[Server] received data from client: " + line

);

}

// Send the length of the data

out.write("DATA_LENGTH " + data.length() + "\n");

// Send the data

out.write(data);

// Read the length of the data

String[] parts = in.readLine().split(" ");

int dataLength = Integer.parseInt(parts[1]);

// Read the data

for (int i = 0; i < dataLength; i++) {

System.out.print((char) in.read());

}

10 Processing data from streams

Read-eval-print loop (REPL)

In order to run multiple commands/actions on the server without closing

the connection, you can use what is called a read-eval-print loop (REPL).

To make it simple, a REPL is simply a loop that will ask the user to input

commands. The loop will then execute the command and display the result.

The loop will continue until the user decides to exit the loop.

In the context of a server, the server will wait for the client to send a

command. The server will then execute the command and send the result

back to the client. The server will continue to wait for the client to send a

new command without closing the connection.

On the client side, the client can interact with the server by sending

commands to the server until they decide to close the connection.

Both the client and the server can close the connection at any time. It is up

to the developer to decide when and who manage to close the connection.

11 Read-eval-print loop (REPL)

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

Practical content

Execute the code examples

Return to the code examples and take some time to execute them,

understand them and see the results.

Update your application protocol

Now that you have gained new knowledge regarding TCP, update the

application protocol you have created for the "Guess the number" game in

the Define an application protocol chapter chapter to reflect the usage of

the TCP protocol.

You can check the official solution in the Define an application protocol

chapter.

Try to access the server from multiple clients at the same

time

Try to access the server from multiple clients at the same time (start the

client multiple times). You will see that the server can only handle one

client at a time.

Do you have any idea why? You will find the answer in a future chapter but

you can try to find it by yourself now. Discuss with your peers if needed to

share your findings.

Explore the Java TCP programming template

In this section, you will explore the Java TCP programming template.

This is a simple template that you can use to create your own TCP clients

and servers in Java.

12 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol

The template is located in the heig-vd-dai-course/heig-vd-dai-course-java-tcp-

programming-template.

Take some time to explore the template. Then, try to answer the following

questions:

How would you use it to create your own TCP clients and servers?

What are the main takeaways of the template?

How you would you implement a TCP network application using the

template and the provided code examples?

You can use the template to create your own TCP network applications.

Go further

This is an optional section. Feel free to skip it if you do not have time.

Implement the "Guess the number" game

Implement the "Guess the number" game using the application protocol you

have made from the Define an application protocol chapter.

You can use the application protocol you have made or the one provided in

the solution if you have not done it.

Use the template and the code examples you just explored to help you

implement the game.

When you create a new repository, you can choose to use a template. Select

the heig-vd-dai-course/heig-vd-dai-course-java-tcp-programming-practical-content

template.

Warning

Please make sure that the repository owner is your personal GitHub account

and not the heig-vd-dai-course organization.

Dockerize the application

Using the Docker knowledge you have acquired in the Docker and Docker

Compose chapter, dockerize the application.

•

•

•

13 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-tcp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-tcp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-tcp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-tcp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/06-docker-and-docker-compose
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/06-docker-and-docker-compose

The steps to dockerize the application are the following:

Create a Dockerfile for the application

Publish the application to GitHub Container Registry

You should then be able to run the server and the client in Docker

containers and access the server from the client using the following

commands:

Note

I (Ludovic) was not able to test these commands thoroughly. You might

need to adapt them to make them work. If something does not work, feel

free to tell me so I can update the commands.

The --name sets the name of the container as well as the hostname of the

container. This allows to access the server container using its hostname

from the client.

You might notice that no ports are published to the host. As both container

run on Docker, they share the same network bridge. They can thus

communicate together without passing by the host.

Compare your solution with the official one

Compare your solution with the official one stated in the Solution section.

If you have any questions about the solution, feel free to ask as described

in the Finished? Was it easy? Was it hard? section.

Go one step further

Can you update the network application to allow the client to specify

the range of the number to guess before starting the game?

Can you implement the "Temperature monitoring" application with TCP?

•

•

Start the server

docker run --rm -it --name the-server <docker-image-tag> server

Start the client and access the server container

docker run --rm -it <docker-image-tag> client --host the-server

•

•

14 Practical content

Conclusion

What did you do and learn?

In this chapter, you have learned how to use the Socket API to create your

own TCP clients and servers in Java.

Congratulations! It is a big step forward!

You are now able to create your own network applications, such as a chat

server, a file server, a web server, etc.

As for now, only one client can access the server at the same time. You will

see in a future chapter how to manage multiple clients at the same time!

Test your knowledge

At this point, you should be able to answer the following questions:

What is a socket?

What is the difference between a server socket and a client socket?

How do sockets compare to files?

Why is TCP considered as a reliable protocol?

•

•

•

•

15 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

16 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/116

What will you do next?

In the next chapter, you will learn the following topics:

Java UDP programming

How does it compare to TCP?

How to create efficient UDP network applications

Implement the "Temperature monitoring" application using UDP

(optional)

•

17 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it!

•

18 Additional resources

Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

19 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions

Sources

Main illustration by Carl Nenzen Loven on Unsplash•

20 Sources

https://unsplash.com/@archduk3
https://unsplash.com/photos/N8GdKC4Rcvs

	Java TCP programming - Course material
	Table of contents
	Objectives
	Explore the code examples
	TCP
	The Socket API
	Client/server common methods
	Client workflow and methods
	Server structure and methods

	Processing data from streams
	Variable length data

	Read-eval-print loop (REPL)
	Practical content
	Execute the code examples
	Update your application protocol
	Try to access the server from multiple clients at the same time
	Explore the Java TCP programming template
	Go further
	Implement the "Guess the number" game
	Dockerize the application
	Compare your solution with the official one
	Go one step further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Sources

