HTTP and curl

L. Delafontaine and H. Louis, with the help of GitHub Copilot.
Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the license.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://github.com/heig-vd-dai-course
https://heig-vd-dai-course.github.io/heig-vd-dai-course/21-http-and-curl/
https://heig-vd-dai-course.github.io/heig-vd-dai-course/21-http-and-curl/21-http-and-curl-presentation.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Objectives

Understand the basics of HTTP
Understand the basics of APIs

Learn

Learn
asimp

Learn

Learn

now to use curl

now to design and document
e AP

now to develop a simple API

now to use a simple API

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Disclaimer

More details for this section in the . You can find
other resources and alternatives as well.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/21-http-and-curl/COURSE_MATERIAL.md
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Disclaimer

e This is not a course on web
development

e Many many things are not covered
e Focuson HTTP version 1.1

e Javalin used for learning purposes

e For production, use a framework
like Quarkus or Spring Boot

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://javalin.io/
https://quarkus.io/
https://spring.io/projects/spring-boot
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Prepare and setup your environment

More details for this section in the course material. You can find
other resources and alternatives as well.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/21-http-and-curl/COURSE_MATERIAL.md
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

curl

e An open source command-
line tool

e Used to transfer data using
various protocols

o HTTP/HTTPS
o FTP
o etc.

e Used to test APIs

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

curl//

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Javalin

e Alightweight web
framework for Java and
Kotlin

e Easy tolearn and use:
perfect for learning
purposes

e Production ready but not as
powerful as Quarkus or
Spring Boot

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

@ javalin

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP

More details for this section in the . You can find
other resources and alternatives as well.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/21-http-and-curl/COURSE_MATERIAL.md
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP

e Initiated by Tim Berners-Lee at
CERN in 1989

e Firstreleasein 1990 to transfer
HyperText Markup Language
(HTML) documents

e Built ontop of TCP (HTTP/1.0,
HTTP/1.1 and HTTP/2.0) or
UDP/QUIC (HTTP/3)

e Ports 80 (HTTP) or 443 (HTTPS)

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

e Hyper Text Transfer Protocol
(HTTP) based on TCP

e Application layer protocol with
many features

e Used to transfer data between a
client (an user agent) and a server

e Aclient can be aweb browser, a
mobile application, a command-line
tool, household appliance, etc.

e The client requests a resource from
the server

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP versions

Multiple versions exist:

T
T
T

T

/1.0 (1996)
P/1.1(1997)
P/2 (2015)

P/3(2022)

The most used version is
HTTP/1.1. Each version is to
iImprove performance.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

HTTP Semantics

TCP

HTTP 1.1

| HTTP/2 |

TCP

HTTP/3

QUIC

UDP

IPv4 / IPv6

11

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP resources

e Aresource isidentified by a

Uniform Resource Locator
(URL)

e A resource can be afile, a
document, a video, etc.

e Sometimes called an
endpoint or a route

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

eeoe [- <

& spotin.cl

M+ O

API - Auth R
‘m /api/auth/login Log into Spot in with username and password v e ‘
‘m /api/auth/signup Sign up to Spotin v‘

API - Spots R
‘m /api/spots Getthe spots = © ‘
‘m /api/spots Createanews pot < a ‘
‘E /api/spots/{id} Getthe specified spot v‘
‘m /api/spots/{id} Update the specified spot o ﬂ‘
[/api/spots/{id} Delete the specified spot o ﬂ]
‘m /api/spots/public Getthe public spots v‘

API - Tokens R
‘E /api/tokens Getthe tokens = & ‘
‘m /api/tokens Create a new token < a ‘
‘m /api/tokens/{id} Getinhe specified token o ‘
[/api/tokens/{id} Delete the specified token o ﬂ]

12

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

An example of a URL is the following:

https://gaps.heig-vd.ch/consultation/fiches/uv/uv.php?id=6573

e Protocol: http:// or https://
e Host: gaps.heig-vd.ch
e Port: :80 or :443 (optional)

e Path: /consultation/fiches/uv/uv.php

e Query parameters: ?id=6573
This resource returns a HTML document.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

13

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

URL encoding

e URLs can only contain a
limited set of characters

e Some characters are
reserved for special
purposes

e Some characters must be
encoded: (Space -> %20)

e For example, Hello world
becomes Hello%26world

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

=
+

eoe M - < &

& enwikipedia.org &

A E e e e R T = |

*= rcharacters in a URI must be percent-encoded.

Reserved characters | edit)

When a character from the reserved set (a "reserved character") has a special meaning (a "reserved purpose") in a certain context,
and a URI scheme says that it is necessary to use that character for some other purpose, then the character must be percent-
encoded. Percent-encoding a reserved character involves converting the character to its corresponding byte value in ASCII and then
representing that value as a pair of hexadecimal digits (if there is a single hex digit, a leading zero is added). The digits, preceded by
a percent sign (%) as an escape character, are then used in the URI in place of the reserved character. (For a non-ASCII character,
it is typically converted to its byte sequence in UTF-8, and then each byte value is represented as above.)

The reserved character / , for example, if used in the "path” component of a URI, has the special meaning of being a delimiter
between path segments. If, according to a given URI scheme, / needs to be in a path segment, then the three characters %2F or
%2f must be used in the segment instead of araw / .

Reserved characters after percent-encoding

3

! L # $ % & ' () * + ' / : ; =

u

%20 | %21 | %22 | %23 | %24 | %25 | %26 | %27 | %28 | %29 | %2A | %2B | %2C | %2F | %3A | %3B | %3D | %3F

Reserved characters that have no reserved purpose in a particular context may also be percent-encoded but are not semantically
different from those that are not.

In the "query" component of a URI (the part after a ? character), for example, / is still considered a reserved character but it
normally has no reserved purpose, unless a particular URI scheme says otherwise. The character does not need to be percent-
encoded when it has no reserved purpose.

URls that differ only by whether a reserved character is percent-encoded or appears literally are normally considered not equivalent
(denoting the same resource) unless it can be determined that the reserved characters in question have no reserved purpose. This
determination is dependent upon the rules established for reserved characters by individual URI schemes.

Unreserved characters |[edit)

Characters from the unreserved set never need to be percent-encoded.

URls that differ only by whether an unreserved character is percent-encoded or appears literally are equivalent by definition, but URI
processors, in practice, may not always recognize this equivalence. For example, URI consumers should not treat %41 differently
from A or %7E differently from ~ , but some do. For maximal interoperability, URI producers are discouraged from percent-
encoding unreserved characters.

14

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP request
methods

e GET - Get aresource
e POST - Create aresource

e PATCH/ PUT - Update a
resource

e DELETE - Delete aresource

A browser does GET methods
by default.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

eoe M - < & spotin.ch H o+ O
API - Auth R
‘m /api/auth/login Log into Spotin with username and password v @ ‘
lm /api/auth/signup Sign upto Spotin v‘
API - Spots ~
‘m /api/spots Getthe spots = © ‘
lm /api/spots Createanews pot < a ‘
‘m /api/spots/{id} Getihe specified spot v‘
‘m /api/spots/{id} Update the specified spot o ﬂ‘
[/api/spots/{id} Delete the specified spot o ﬂ]
‘m /api/spots/public Getthe public spots v‘
API - Tokens R
‘m /api/tokens Get the tokens < @ ‘
lm /api/tokens Create a new token - a ‘
‘m /api/tokens/{id} Get the specified token . @ ‘
[/api/tokens/{id} Delete the specified token

15

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP request and
response format

e To request aresource, a client
sends a HTTP request to a server

e The server processes the request
and sends back a HTTP response

HTTP is based on a request-response
model.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

The HTTP request and response are composed of:

e A startline with:

o The method
o The URL

o The version

¢ Headers with metadata
e An empty line

e An optional body with data

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

17

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Structure of a HTTP request:

<HTTP method> <URL> HTTP/<HTTP version>
<HTTP headers>

<Empty line if there is a body>

<HTTP body (optional)>

Structure of a HTTP response:

HTTP/<HTTP version> <HTTP status code> <HTTP status message>
<HTTP headers>

<Empty line if there is a body>
<HTTP body>

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

18

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

A HTTP request example:

GET / HTTP/1
Host: gaps.heig-vd.ch
User-Agent: curl/8.1.2
Accept: */*

A HTTP response example:

HTTP/1.1 200 OK
Content-Type: text/html; charset=IS0-8859-1
Content-Length: 6111

<!DOCTYPE HTML>

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

19

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP response
status codes

Grouped by categories:

e Ixx: Informational
e 2XX: Success

e 3xx: Redirection

e 4xx: Client error

e 5xx: Server error

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

References

Get real-time assistance with your coding queries. Try Al Help now!

/I/] mdn web docs__

Filter

In this article

Information responses
Successful responses
Redirection messages
Client error responses
Server error responses

Browser compatibility

See also

Mozilla VPN

View the web from
your users’
perspective. Use
Mozilla VPN to test
software globally.

HTTP response status codes

& developer.mozilla.org

B English (US)

HTTP response status
codes

HTTP response status codes indicate whether a specific HTTP

request has been successfully completed. Responses are

grouped in five classes:

1.

2
3
4
5

Informational responses (188 — 199)

. Successful responses (200 — 299)
. Redirection messages (380 — 399)

. Client error responses { 488 — 499)

. Server error responses { 508 — 599)

The status codes listed below are defined by REC 9110 2.

© Note: If you receive a response that is not in this list, it is

a non-standard response, possibly custom to the

server's software.

20

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP path parameters, query parameters
and body

These elements are used to pass data to the server.
Path parameters and query parameters are part of the URL.

Headers are part of the HTTP request or response.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

21

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP path parameters

An example of a path parameter is the following:

/users/{user-id}

The {user-id} partis a path parameter.

With values: /users/123 -> 123 is the user ID.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

22

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP query parameters

An example of a query parameter is the following:

/users?firstName=John&lastName=Doe

The ? character separates the path from the query parameters.
The & character separates query parameters.

Each query parameter is composed of a key and a value.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

23

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP body

An example of a HTTP body is the following:

HTTP/1.1 2080 OK
Content-Type: text/html; charset=IS0-8859-1
Content-Length: 6111

<IDOCTYPE HTML [...]>
<html>

[...]

</html>

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

24

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP headers

HTTP headers are used to pass metadata to/from the server.

e Accept - The media types accepted by the client
e Content-Type - The media type of the body

e Content-Length - The length of the body

e User-Agent - The user agent of the client

e Host - The host of the server

e Set-Cookie - The cookies set by the server

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

25

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP content negotiation

The Accept header is used to negotiate the content type between the
client and the server. These are based on the MIME types:

e Accept: text/html - HTML
e Accept: application/json - JSON

e etc.

The same URL can return different content types based on the
Accept header.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

26

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP sessions

As HTTP is based on the request-response model, each request is
independent of the others. This is called a stateless protocol.

This means that the server cannot know/identify who is the author of
each request without additional information. Let's take an example:

1. A first user access the homepage of a website

2. A second user access the homepage of the same website
Who is the author of each request?

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

27

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Why does the server not know who
you are?

It is because you have not stated who
you are. In other words, you do not
have a session with the server.

They are two ways to maintain a
session:

e Using a query parameter

e Using cookies

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

28

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP sessions using a query parameter

A query parameter can be used to maintain a session:

C: POST /login

S: 302 Found (redirect to /profile?token=1234567890)
C: GET /profile?token=12345678960

S: 200 OK (profile page)

Advantages: Easy to implement.

Disadvantages: The token is visible in the URL (security issue).

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

29

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

HTTP sessions using a cookie

A cookie can be used to maintain a session:

: POST /login

. 200 OK (set a cookie with the token)

: GET /profile (the cookie is sent by the client)
. 200 OK (profile page)

mw o wmo

Advantages: The token is not visible in the URL (more secure).

Disadvantages: A bit more complex to implement.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

30

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Do all websites use sessions?

Not all applications need a session.

For example, a calculator application that waits for a calculation and
directly sends the result does not need to keep track of the client:

e Each request is independent of the others

e The server can directly respond to each request

The server does not have to know who is the author of the request: it
can send the result directly to the client.

HEIdhvEhis icasee thes-senver does4snot need to use HTTP sessions and is, 31

Yy _l

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

On the other hand, an e-commerce application where the user can
add items to a shopping cart needs to keep track of the client:

e The user can add items to the shopping cart

e The user can remove items from the shopping cart

e The user can buy the items in the shopping cart

The server must know who is the author of each request in order to
maintain the shopping cart.

In this case, the server must use HTTP sessions and is, therefore,
stateful.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

32

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

API design

More details for this section in the . You can find
other resources and alternatives as well.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

33

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/21-http-and-curl/COURSE_MATERIAL.md
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

APl design

Developing a web application is not easy.

In order to make it easier, we follow patterns and a set of rules such
as an Application Programming Interface (API).

An APl is a contract between the client and the server that must
be documented.

Most APIls are based on HTTP and exchange data in JSON format, the
most used format for APlIs.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

34

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

JSON is an easy to read and
write format for humans. It is
also easy to parse for
computers.

Example of a JSON document:

"firstName": "John",
"lastName": "Doe",
‘age": 42

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

[] E] v < [json.org

Introducing JSON

L all Brazapewu 1 ¥ Cesky Dansk Nederlands English Esperanto Frangais Deutseh EAAyvied 117128 Magyar Indonesia Italiano
HA T50] sy li Polski Portugués Romdnd Pycexwii Cpnoxo-xpaamcxu Sloveniting Espaiiol Svenska Tlirkpe ¥ xpaincexa Tidng Vigr

ECMA-404 The JSON Data Interchange Standard.

JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for machines
to parse and generate. It is based on a subset of the JavaScript
Programming Language Standard ECMA-262 3rd Edition - December
1999. JSON is a text format that is completely language independent
but uses conventions that are familiar to programmers of the C-family
of languages, including C, C++, C#, Java, JavaScript, Perl, Python,
and many others. These properties make JSON an ideal data-
interchange language.

JSON is built on two structures:

A collection of name/value pairs. In various languages, this is
realized as an object, record, struct, dictionary, hash table, keyed
list, or associative array.

An ordered list of values. In most languages, this is realized as
an array, vector, list, or sequence.

These are universal data structures. Virtually all modern programming
languages support them in one form or another. It makes sense that a
data format that is interchangeable with programming languages also
be based on these structures.

In JSON, they take on these forms:
An object is an unordered set of name/value pairs. An object begins

with { ieft brace and ends with } right brace. Each name is followed by : coton
and the name/value pairs are separated by , comma.

‘0 bject m | ey | (-'-\‘

json
element

value

object
array
string
number
"true"
"false"
"null"

object
l{l WS |}|

'{' members '}’

members
member
member ',

' members
member
ws string ws

':" element

array
l[1] ws '] '
'[" elements '7"

35

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Simple APIs with CRUD
operations

CRUD stands for:

e Create
e Read

e Update

e Delete

CRUD APIs are used to manage data.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

36

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

A simple APl with CRUD operations to
manage users will expose the
following endpoints:

e POST /users - Create a new user
® GET /users - List all users

e GET /users/{id} - Read a user

e PUT /users/{id} - Update a user

e PATCH /users/{id} - Partially
update a user

® DELETE /users/{id} - Delete a user

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

37

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

REST APls

A REST API is a set of (strict) rules to design APIs.

The REST pattern is based around a six following principles.
Is is an improvement over CRUD APIs.

Not all APls are REST APIs but all REST APIs are APls.

REST APIs are hard to implement correctly. In this course, we will
stay with CRUD APIs. We mention REST APIs for completeness.

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

38

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

How to document an API

B s e e 0

e Documentation is important for
developers as well as users

e cd [A

-
25
a

e An APl exposes the features of an
application to the outside world

[EE | (I}

e e e IERIN = |
e LW

(W |

pRsth o

L [E R

e There exist many tools to document
APIls such as

e As these tools are complex, we will
use a simple solution: a text file

B

MEEE | Rk
e e

| "ﬁ"ml Ko

R R
Ha1. 001 Sl FOI I Aol T

(@ (e M7 5 llel

WA Tw L] SIRERa &

.]
T |

— =)

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

e e O (=N R- .
[Ell!i
o e bl i = f

[o |-fi-{-4--o-1

https://www.openapis.org/
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

How to persist data

e |n the course material, we store
data in memory

e Data can be (and should be!) stored
in a database

e Qut of scope for this course but you
can find resources in the course
material

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

How to secure an API

e Not all APIs are public

e Some APIs are private and require
authentication

e Qut of scope for this course but you
can find resources in the course
material.

It is more important to understand

the basics of how to design, how to

develop and how to document an API.
HEIG-VD - DAl Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Questions

Do you have any questions?

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

42

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Practical content

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

43

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

2| 21-http-and-curl ~ ; in ~ Start application

What will you do?

[0 .idea

rentHashMa

e Try out all the main
concepts of HTTP . .
(methods, status codes, s
headers, JSON, etc.)

app.g
dependency-reduced
-~ app.g
=] mvnw
app.pu
e Learn how to use curl — mnend app.

pom.xml

README.md app.

e Build a simple web

application to manage users © e b 13 - s 375507 o

Content-Type: appli
Content-Length: 295

e Learn how to design and o e e

:1,"firstName":"Jane", "lastName":"Doe","email":"jane.doe@example d":"secret"},{"i

d t a M p I A P I d":2,"firstName":"Johanna","lastName":"Doe", "email”:"johanna.doe@example.com”, "password":"secret"}
ocumen simpile ;)

et"}, {

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

You can find the practical

-
@
. -
Q
<+
Q.
(qV)
L
@)
.S
L
<+
. -
O
Y
<+
-
Q
<+
-
O
@)

45

https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/21-http-and-curl/COURSE_MATERIAL.md
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Finished? Was it easy? Was it hard?

Can you let us know what was easy and what was difficult for you
during this chapter?

This will help us to improve the course and adapt the content to your
needs. If we notice some difficulties, we will come back to you to help

you.

You can use reactions to express your opinion on a comment!

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0 46

https://github.com/orgs/heig-vd-dai-course/discussions/121
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

What will you do next?

In the next chapter, you will learn the
following topics:

e Web infrastructures

o How to run and maintain web
applications on the Internet?

o How to scale web applications?

o How to secure web applications?

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Sources

e Main illustration by Ashley Knedler on Unsplash

ustration
ustration
ustration
ustration
ustration

ustration

by Aline de Nadai on Unsplash

by Bernard Hermant on Unsplash

by Walling on Unsplash

by Pavan Trikutam on Unsplash

by Chien Nguyen Minh on Unsplash

by Inaki del Olmo on Unsplash

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

48

https://unsplash.com/@ashkned
https://unsplash.com/photos/KvD36NRFjl4
https://unsplash.com/@alinedenadai
https://unsplash.com/photos/j6brni7fpvs
https://unsplash.com/@bernardhermant
https://unsplash.com/photos/white-and-black-signage-mountain-on-wall--iVnye8VaHY
https://unsplash.com/@walling
https://unsplash.com/photos/silver-iphone-6-beside-macbook-pro-h91bpI4c8I0
https://unsplash.com/@ptrikutam
https://unsplash.com/photos/minimalist-photography-of-three-crank-phones-71CjSSB83Wo
https://unsplash.com/@wru_fightming
https://unsplash.com/photos/man-in-white-dress-shirt-holding-yellow-balloon-sY6zEnUM0Cw
https://unsplash.com/@inakihxz
https://unsplash.com/photos/NIJuEQw0RKg
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

o |llustration by Jan Antonin Kolar on Unsplash

e |llustration by Amol Tvagion Unsplash

o |llustration by Nicolas Picard on Unsplash

HEIG-VD - DAI Course 2025-2026 - CC BY-SA 4.0

49

https://unsplash.com/@jankolar
https://unsplash.com/photos/brown-wooden-drawer-lRoX0shwjUQ
https://unsplash.com/@amoltyagi2
https://unsplash.com/photos/silver-skeleton-key-on-black-surface-0juktkOTkpU
https://unsplash.com/@artnok
https://unsplash.com/photos/-lp8sTmF9HA
https://heig-vd.ch/
https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

