
Java UDP programming
- Course material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/13-java-udp-programming/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/13-java-udp-programming/13-java-udp-programming-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

Explore the code examples

UDP

Differences between TCP and UDP

UDP datagrams

Reliability

UDP in the Socket API

Unicast, broadcast and multicast

Unicast

Broadcast

Multicast

Messaging patterns

Service discovery protocols

Practical content

Update your application protocol

Learn to use the debugger

Try to emit from multiple emitters at the same time

Explore the Java UDP programming template

Go further

Compare your solution with the official one

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Solution

Sources

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Objectives

You have seen and experimented with TCP in the previous chapter. You have

seen that TCP is a connection-oriented protocol. It means that a connection

must be established before sending data.

In this chapter, you will see and experiment with UDP. UDP is mainly used

when reliability is not required. It is used for streaming, gaming, etc.

UDP is sensibly different from TCP and it is important to understand the

differences between the two protocols.

3 Objectives

Explore the code examples

Individually, or in pair/group, take 15 minutes to explore and discuss the

code examples provided in the heig-vd-dai-course/heig-vd-dai-course-code-

examples repository. Clone it or pull the latest changes to get the code

examples.

The code examples are located in the 13-java-udp-programming directory.

Try to answer the following questions:

How do the code examples work?

What are the main takeaways of the code examples?

What are the main differences between the code examples?

You can use the following theoretical content to help you.

•

•

•

4 Explore the code examples

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples

UDP

UDP is a transport layer protocol, like TCP. It is used to send data over the

network. However, there are numerous differences between TCP and UDP.

UDP is a connectionless protocol, which means that it does not require to

establish a connection before sending data.

UDP does not provide any reliability mechanism. It does not guarantee that

the data will be received by the receiver at all, nor that the data will be

received in the same order as it was sent.

A good analogy is to think of UDP as the postal service with postcards: you

write multiple postcards and send them to someone. You do not know if the

postcards will be received nor if they arrive in the same order as they were

sent. You do not know if the postcards will be received at all if the postal

service loses them.

Just as with postcards, UDP is used when reliability is not required.

5 UDP

Differences between TCP and

UDP

The following table summarizes the differences between TCP and UDP.

TCP UDP

Connection-oriented Connectionless

Reliable Unreliable

Stream protocol Datagram protocol

Unicast Unicast, broadcast and multicast

Request-response
Fire-and-forget, request-response

(manual)

- Service discovery protocols

Used for FTP, HTTP, SMTP, SSH,

etc.
Used for DNS, streaming, gaming, etc.

6 Differences between TCP and UDP

UDP datagrams

Unlike TCP, UDP is not a stream protocol. It is a datagram protocol. It means

that UDP sends data in discrete chunks called datagrams.

Datagrams are like the postcards in the previous analogy. They are sent

independently from each other. They are not related to each other. They

contain a destination address, a payload and the sender address. If you

need to, you can use the sender address to reply to the sender.

UDP datagrams are composed of a header and a payload. The header

contains information about the datagram, such as the source and

destination port. The payload contains the data to send.

The size of the payload is limited to 65,507 bytes. It is because the payload

length is encoded on 16 bits in the header.

The payload of a UDP datagram can be a notification, a request, a query, a

response, etc. It is up to the application to define the payload format.

If the payload is too large, the datagram will be fragmented. It means that

the payload will be split into multiple datagrams. The receiver will have to

reassemble the datagrams to get the original payload.

7 UDP datagrams

Reliability

As UDP does not provide any reliability mechanism, it is up to the

application to implement it. For example, the application can implement a

mechanism to acknowledge the reception of a datagram and retransmit it if

it was not received.

What is offered by TCP has to be implemented by the application with UDP.

In certain cases, reliability is not required. Some applications are tolerant to

data loss.

For example, streaming can be a perfect use case for UDP. If a datagram is

lost, it does not matter much: the receiver will receive the next datagram

and the stream will continue. A good example would be the streaming of a

live event on your television:

If a few datagrams are lost, the receiver might notice it with a few

glitches (video artifacts) but it will not affect the entire stream.

If too many datagrams are lost, the receiver will not be able to

reassemble the payload and the stream will stop.

Some video services such as Jitsi (an open source Zoom/Google Meet/

Teams alternative) can make usage of the UDP protocol with the help of

WebRTC. However, even these applications might prefer to make usage of

the TCP protocol to guarantee the reliability of their services.

The game Factorio (a game where you build and manage factories) is

another good example of an application that make usage of the UDP

protocol when playing on a multiplayer server:

Factorio uses UDP only. The game builds its own "reliable delivery"

layer built on UDP to deal with packet loss and reordering issues.

https://wiki.factorio.com/Multiplayer

As mentioned before, it is up to the application to implement a reliability

mechanism if required (with a message ID and an acknowledgement for

example, just as TCP).

•

•

8 Reliability

https://jitsi.org/
https://webrtc.org/
https://www.factorio.com/
https://wiki.factorio.com/Multiplayer

We can illustrate this with the following example:

You have developed a very simple application protocol where clients can

send INCREMENT and DECREMENT commands to increment/decrement a

counter on the server. The counter is shared between all clients.

If the clients send 10 INCREMENT commands, the counter should be

incremented by 10.

In a perfect world, the server would receive 10 INCREMENT commands and the

counter would be incremented by 10.

However, we know one of the datagrams could be lost. If the server receives

9 INCREMENT commands, the counter will be incremented by 9 instead of 10.

Both parties (the client and the server) could implement a reliability

mechanism to solve this issue.

The server could implement a reliability mechanism to acknowledge the

reception of a datagram. If a client does not receive an acknowledgement

within a specific period, it should retransmit the datagram.

However, even the acknowledgement could be lost. The client could

retransmit the datagram multiple times and the server could receive it

multiple times.

The server could implement a mechanism to detect duplicate datagrams

and ignore them. It could also implement a mechanism to detect out-of-

order datagrams and reorder them.

Handling reliability is quite challenging. In the context of this course,

reliability is not required. We will focus on the UDP protocol itself and not

on the reliability mechanism(s).

If you are interested, you can have a look at the Automatic Repeat reQuest

(ARQ) protocol. It is a mechanism used to detect and retransmit lost

datagrams.

9 Reliability

https://en.wikipedia.org/wiki/Automatic_repeat_request
https://en.wikipedia.org/wiki/Automatic_repeat_request

UDP in the Socket API

As seen in the Java TCP programming chapter, the Socket API is a Java API

that allows you to create TCP/UDP clients and servers. It is described in the

java.net package in the java.base module.

In the UDP world, the Socket class is replaced by the DatagramSocket class.

The DatagramSocket class is used to create UDP clients and servers. It is used

to send and receive UDP datagrams.

A datagram is created with the DatagramPacket class. It is used to create a

datagram with a payload and a destination address.

A multicast socket is created with the MulticastSocket class. It is used to

create a multicast datagram with a payload and a multicast address,

allowing multiple hosts to receive the datagram.

UDP can be used to create a client-server architecture. However, it is not

required. It is possible to create a peer-to-peer architecture with UDP.

10 UDP in the Socket API

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/12-java-tcp-programming
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/module-summary.html

Unicast, broadcast and

multicast

Unlike TCP, UDP supports three types of communication: unicast, broadcast

and multicast (TCP only supports unicast).

Unicast

Unicast is the most common type of communication. It is a one-to-one

communication. It means that a datagram is sent from one host to another

host, just like TCP.

Think of it as a private conversation between two people.

To send a unicast datagram, the sender must know the IP address and port

of the receiver. It is mostly the same as TCP, without all the features

provided by TCP but all the performance of UDP.

Broadcast

Broadcast is a one-to-all communication. It means that a datagram is sent

from one host to all hosts on the network.

Think of it as a public announcement.

To send a broadcast datagram, the sender must know the broadcast

address. The broadcast address is a special address that represents all

hosts on the network and/or all hosts of a specific subnet.

The broadcast address is defined by the subnet mask. The subnet mask is a

32-bit number. It is represented as four numbers separated by a dot (e.g.

255.255.255.0). Sometimes, the subnet mask is represented as a single number

(e.g. /24 for 255.255.255.0 as 24 bits are set to 1).

A good example is stated in the following table (source: https://

en.wikipedia.org/wiki/Broadcast_address):

11 Unicast, broadcast and multicast

https://en.wikipedia.org/wiki/Broadcast_address
https://en.wikipedia.org/wiki/Broadcast_address

Network IP
address
breakdown
for
172.16.0.0/12

Binary form
Dot-decimal
notation

1. Network IP

Address
10101100.00010000.00000000.00000000 172.16.0.0

2. Subnet

Mask, or just

"Netmask" for

short (The /12

in the IP

address in this

case means

only the left-

most 12 bits

are 1s, as

shown here.

This reserves

the left 12 bits

for the

network

address

(prefix) and

the right 32 -

12 = 20 bits for

the host

address

(suffix).)

11111111.11110000.00000000.00000000 255.240.0.0

3. Bit

Complement

(Bitwise NOT)

of the Subnet

Mask

00000000.00001111.11111111.11111111 0.15.255.255

4. Broadcast

address

(Bitwise OR of

Network IP

Address and

10101100.00011111.11111111.11111111 172.31.255.255

12 Unicast, broadcast and multicast

Network IP
address
breakdown
for
172.16.0.0/12

Binary form
Dot-decimal
notation

Bit

Complement

of the Subnet

Mask. This

makes the

broadcast

address the

largest

possible IP

address (and

host address,

since the host

address

portion is all

1s) for any

given network

address.)

If you want to send a broadcast to all devices on all network subnets, you

can use the 255.255.255.255 broadcast address.

Important

You must be aware that there can be restrictions on the use of broadcast.

For example, broadcast is limited to the local network but can still be

blocked by a firewall and/or a router.

Multicast

Multicast is a one-to-many communication. It means that a datagram is

sent from one host to multiple hosts.

Think of it as a group conversation.

13 Unicast, broadcast and multicast

To send a multicast datagram, the sender uses a multicast address. The

multicast address is a special address that represents a group of hosts on

the network. Think of it as a radio channel or a Discord channel: everyone

on the channel will receive the messages sent in a given channel.

Multicast addresses are specific IP addresses in the range from 224.0.0.0 to

239.255.255.255 for IPv4 and f00::/8 for IPv6.

Just as for ports, some multicast addresses are reserved for specific

purposes. A complete list is available on the IANA website and further

described in the RFC 5771.

For local networks, the multicast range is from the Administratively Scoped

Bloc of the RFC. More details are available in the RFC 2365.

Any multicast addresses in the range 239.0.0.0 to 239.255.255.255 can be used for

your own applications.

Just as for broadcast, the sender must know the multicast address to send a

datagram to a multicast group. Just as for broadcast as well, there can be

restrictions on the use of multicast.

Multicast is quite guaranteed not to work on the public Internet. It is only

guaranteed to work on a local network. If you need to use multicast

between multiple networks, you must use a tunnel such as a virtual private

network (VPN) to bypass this restriction.

Multicast is presented in this course because it is an important concept in

service discovery protocols. However, you must be aware that it is quite not

possible to use multicast on the public Internet, thus it greatly limits its

usage.

Also, Multicast is a complex topic. It is not covered in depth in this course.

For a deeper understanding of possible usages of multicast on the Internet,

you can read the following resources:

IP multicast

Internet Group Management Protocol

Internet Protocol television

•

•

•

14 Unicast, broadcast and multicast

https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
https://datatracker.ietf.org/doc/html/rfc5771
https://datatracker.ietf.org/doc/html/rfc2365
https://en.wikipedia.org/wiki/IP_multicast
https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol_television

Messaging patterns

As UDP does not provide a connection mechanism, it is up to the

application to define the messaging pattern (how to send and receive data).

There are two common messaging patterns: fire-and-forget and request-

response.

The fire-and-forget pattern is the simplest messaging pattern. It is a one-

way communication. It means that a datagram is sent from one host to

another host without expecting a response.

The fire-and-forget pattern is used when the sender does not need to know

if the datagram was received or not.

The request-response (sometimes called request-reply) pattern is a two-

way communication. It means that a datagram is sent from one host to

another host and a response is expected.

When creating a datagram, it is possible to specify a port. While not

mandatory, this port can be used by the receiver to know whom to reply to.

If no port is specified, the operating system will simply assign a random

port for the out going datagram.

The receiver of the datagram can then extract the sender's IP address and

port and use them to reply to the sender using unicast.

The request-response pattern can be used when the sender needs to know

if the datagram was received or not.

Both sides of the communication can send a request and receive a

response.

15 Messaging patterns

Service discovery protocols

With unicast, the sender must know who the receiver is; the sender must

know the IP address of the receiver.

With broadcast and multicast, the sender does not need to know who the

receivers are; the sender does not need to know the IP address of the

receivers. The sender knows that nodes nearby (or those who expressed

interest in the broadcast) will receive the datagram.

Using this property, it is possible to create service discovery protocols.

Service discovery protocols are used to discover services on the network.

They are used to find services without knowing their IP address.

There are two types of service discovery protocols: passive and active.

Passive service discovery protocols are based on broadcast or multicast.

They are used to announce the presence of a service on the network.

Active service discovery protocols are also based on broadcast or multicast

but then switch to unicast. They are used to query the network to find a

service.

There are many service discovery protocol patterns. The most common are

the following:

Advertisement - A passive discovery protocol pattern: a server (called a

service provider) announces its presence on the network. The service

provider sends a broadcast or multicast datagram to announce its

presence. The datagram contains information about the service (name,

IP address, port, etc.). The datagram is sent periodically to announce

that the service is still available.

The clients (called service consumers) listen to the broadcast or

multicast datagrams to discover the services on the network.

If a service consumer is interested by the service provider

announcement, it can manifest its interest.

•

16 Service discovery protocols

Query - An active discovery protocol pattern: a client (called a service

consumer) queries the network to find a service. The client sends a

unicast datagram on the network to request information about a

service.

If a service that provides the requested service (called a service

provider) is available, it replies with a unicast datagram containing the

requested information to connect to the service, just as seen with the

request-response messaging pattern.

•

17 Service discovery protocols

These patterns can still be used with other protocols such as TCP.

18 Service discovery protocols

Practical content

Execute the code examples

Return to the code examples and take some time to execute them,

understand them and see the results.

Update your application protocol

Now that you have gained new knowledge regarding UDP, update the

application protocol you have created for the "Temperature monitoring"

application in the Define an application protocol chapter chapter to reflect

the usage of the UDP protocol.

You can check the official solution in the Define an application protocol

chapter.

Learn to use the debugger

Every decent IDE has a debugger. The debugger is a tool that allows you to

inspect the state of your program at runtime.

The debugger allows you to:

Set breakpoints: a breakpoint is a point in your code where the program

will stop when it is reached.

Step through your code: you can step through your code line by line to

see what is happening.

Inspect variables and expressions: you can inspect the value of

variables and expressions at runtime.

The debugger is a powerful tool to understand what is happening in your

program.

In IntelliJ IDEA, set a breakpoint by clicking on the left side of the line

number, as shown in the following screenshot:

•

•

•

19 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol

Then, run the program in debug mode by clicking on the bug icon, as shown

in the following screenshot:

20 Practical content

The program will stop at the breakpoint. You can then use the debugger to

step through the code, inspect variables and expressions, etc., as shown in

the following screenshot:

Take some time to learn how to use the debugger in your favorite IDE, this is

a very useful tool.

Try to emit from multiple emitters at the same time

Try to emit from multiple emitters at the same time (start the emitter

multiple times). You will see that the server will receive all messages from

the emitters.

Do you have any idea why? How does it compare to the TCP examples you

have seen in the Java TCP programming chapter?

You will find the answer in a future chapter but you can try to find it by

yourself now. Discuss with your peers if needed to share your findings.

Explore the Java UDP programming template

In this section, you will explore the Java UDP programming template.

21 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/13-java-udp-programming

This is a simple template that you can use to create your own UDP

emitters/clients and receivers/servers in Java.

The template is located in the heig-vd-dai-course/heig-vd-dai-course-java-udp-

programming-template.

Take some time to explore the template. Then, try to answer the following

questions:

How would you use it to create your own UDP emitters/clients and

receivers/servers?

What are the main takeaways of the template?

How you would you implement a UDP network application using the

template and the provided code examples?

You can use the template to create your own UDP network applications.

Go further

This is an optional section. Feel free to skip it if you do not have time.

Implement the "Temperature monitoring" application

Implement the "Temperature monitoring" game using the application

protocol you have made from the Define an application protocol chapter.

You can use the application protocol you have made or the one provided in

the solution if you have not done it.

Use the template and the code examples you just explored to help you

implement the game.

When you create a new repository, you can choose to use a template. Select

the heig-vd-dai-course/heig-vd-dai-course-java-udp-programming-practical-content

template.

Warning

Please make sure that the repository owner is your personal GitHub account

and not the heig-vd-dai-course organization.

•

•

•

22 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-udp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-udp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-udp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course-java-udp-programming-practical-content-template
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol

Dockerize the application

Using the Docker knowledge you have acquired in the Docker and Docker

Compose chapter, dockerize the application.

The steps to dockerize the application are the following:

Create a Dockerfile for the application

Publish the application to GitHub Container Registry

You should then be able to run the emitter, the receiver and the operator in

Docker containers and access the receiver from the operator using the

following commands:

Note

I (Ludovic) was not able to test these commands thoroughly. You might

need to adapt them to make them work. If something does not work, feel

free to tell me so I can update the commands.

The --name sets the name of the container as well as the hostname of the

container. This allows to access the receiver container using its hostname

from the operator.

You might notice that no ports are published to the host. As both container

run on Docker, they share the same network bridge. They can thus

communicate together without passing by the host.

Compare your solution with the official one

Compare your solution with the official one stated in the Solution section.

•

•

Start the emitter

docker run --rm -it <docker-image-tag> emitter

Start the receiver
docker run --rm -it --name the-receiver <docker-image-tag> receiver --network-interface

eth0

Start the operator and access the receiver container

docker run --rm -it <docker-image-tag> operator --host the-receiver

23 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/06-docker-and-docker-compose
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/06-docker-and-docker-compose

If you have any questions about the solution, feel free to ask as described

in the Finished? Was it easy? Was it hard? section.

Go one step further

Can you update the application protocol to allow the operator to have

the latest temperature for a given room or the average temperature of

that room?

Tip: this will require to store all the temperatures received for a

given room and to calculate the average temperature instead of

storing only the latest temperature.

Are you able to Dockerize this application as well?

•

•

24 Practical content

Conclusion

What did you do and learn?

In this chapter, you have learned how to use the UPD protocol to build

different kind of network applications and the differences between TCP and

UDP.

Using Java and Docker and Docker Compose, you were able to containerize

your network application to use it anywhere.

Just as with TCP, you have now all the knowledge to build bigger and better

network applications. We continue our journey toward network application

programming.

Test your knowledge

At this point, you should be able to answer the following questions:

What are the differences between UDP and TCP?

Why is UDP unreliable? How to mitigate this?

What is a datagram? How can a datagram be sent without a server

listening?

What are the differences between unicast, broadcast and multicast?

What are the messaging protocols and their differences?

What are the service discovery protocols? How do they compare to each

other?

•

•

•

•

•

•

25 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

26 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/120

What will you do next?

In the next chapter, you will learn the following topics:

Understand network concurrency.

Manage multiple clients with concurrency.

•

•

27 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it!

•

28 Additional resources

Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

29 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions

Sources

Main illustration by Possessed Photography on Unsplash•

30 Sources

https://unsplash.com/@possessedphotography
https://unsplash.com/photos/tiNCpHudGrw

	Java UDP programming - Course material
	Table of contents
	Objectives
	Explore the code examples
	UDP
	Differences between TCP and UDP
	UDP datagrams
	Reliability
	UDP in the Socket API
	Unicast, broadcast and multicast
	Unicast
	Broadcast
	Multicast

	Messaging patterns
	Service discovery protocols
	Practical content
	Execute the code examples
	Update your application protocol
	Learn to use the debugger
	Try to emit from multiple emitters at the same time
	Explore the Java UDP programming template
	Go further
	Implement the "Temperature monitoring" application
	Dockerize the application

	Compare your solution with the official one
	Go one step further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Sources

