
Java network
concurrency - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/12-java-tcp-programming/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/12-java-tcp-programming/12-java-tcp-programming-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

TCP

The Socket API

Client/server common methods

Client workflow and methods

Server structure and methods

Processing data from streams

Variable length data

Handling one client at a time

Handling multiple clients with concurrency

Multi-processing

Multi-threading

Asynchronous programming

Practical content

Get the required files

Send an email using a SMTP client written in Java with the Socket

API

Run full client/server examples

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Solution

Sources

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Objectives

As you have seen in previous chapters, applications communicate with each

other using application protocols.

Some tools are created to interact with these protocols. For example, you

can use Telnet to interact with the SMTP protocol to send emails or SCP to

interact with the SSH protocol to transfer files.

In this chapter, you will learn how to program your own TCP clients and

servers in Java.

This will allow you to create your own network applications, such as a chat

server, a file server, a web server, etc.

3 Objectives

TCP

TCP is a transport protocol. It is used to transfer data between two

applications. TCP can only do UniCast: one application can only

communicate with one other application.

TCP is a connection-oriented protocol: a connection must be established

between the two applications before data can be exchanged in a

bidirectional way.

TCP is a reliable protocol: data sent is guaranteed to be received by the

other application.

A good analogy is to think of TCP as a phone call. You must first establish a

connection with the other person before you can talk to them. Once the

connection is established, you can talk to the other person and they will

hear everything you say.

With the help of port numbers, TCP allows multiple applications to

communicate with each other on the same machine.

TCP is a stream-oriented protocol: data is sent as a stream of bytes. The

application must split the data into segments. Each segment is identified by

a sequence number.

TCP segments are encapsulated in IP packets, called payloads.

Thanks to the sequence numbers, TCP is able to reassemble the segments

in the correct order. If a segment is lost, TCP will retransmit it.

4 TCP

The Socket API

The Socket API is a Java API that allows you to create TCP/UDP clients and

servers. It is described in the java.net package in the java.base module.

It has originally been developed in C in the context of the Unix operating

system by Berkeley University. It has been ported to Java and is now

available on many platform and languages.

To make it simple, a socket is just like a file that you can open, read from,

write to and close. To exchange data, sockets on both sides must be

connected.

A socket is identified by an IP address and a port number.

A socket can act as a client or as a server:

A socket accepting connections is called a server socket (class

ServerSocket).

A socket initiating a connection is called a client socket (class Socket).

The following schema shows the workflow of a client/server application:

•

•

5 The Socket API

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/ServerSocket.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/ServerSocket.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/Socket.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/Socket.html

Client/server common methods

Operation Description

socket() Creates a new socket

getInputStream() Gets the input stream of a socket

getOutputStream() Gets the output stream of a socket

close() Closes a socket

Client workflow and methods

In order to create a client, the following workflow is followed:

Create a socket (class Socket)

Connect the socket to an IP address and a port number

Read and write data from/to the socket

Flush and close the socket

1.

2.

3.

4.

6 The Socket API

The available methods are the following:

Operation Description

connect() Connects a socket to an IP address and a port number

Server structure and methods

In order to create a server, the following workflow is followed:

Create a socket (class ServerSocket)

Bind the socket to an IP address and a port number

Listen for incoming connections

Loop

Accept an incoming connection - creates a new socket (class

Socket) on a random port number

Read and write data from/to the socket

Flush and close the socket

Close the socket (ServerSocket)

The available methods are the following:

Operation Description

bind() Binds a socket to an IP address and a port number

listen() Listens for incoming connections

accept() Accepts an incoming connection

1.

2.

3.

4.

1.

2.

3.

5.

7 The Socket API

Processing data from streams

Sockets use data streams to send and receive data, just like files.

You get an input stream to read data from a socket and an output stream to

write data to a socket.

You can then decorate the input and output streams with other streams to

process the data.

Use buffered streams to improve performance.

Warning

Do not forget to flush the output stream after writing data to it. Otherwise,

the remaining data in the buffer will not be sent to the other application!

Also, do not forget all the good practices seen in the Java IOs chapter

(encoding, buffering, etc.). They must be applied here too!

// Get input stream

input = socket.getInputStream();

// Get output stream

output = socket.getOutputStream();

// Get input stream as text

input = new InputStreamReader(socket.getInputStream(), StandardCharsets.UTF_8);

// Get output stream as text

output = new OutputStreamWriter(socket.getOutputStream(), StandardCharsets.UTF_8);

// Get input stream as binary with buffer

input = new BufferedReader(new InputStreamReader(socket.getInputStream());

// Get output stream as binary with buffer

output = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream());

out.flush();

8 Processing data from streams

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/05-java-ios

Variable length data

Depending on the application protocol, the data sent can have a variable

length.

There are two ways to handle variable length data:

Use a delimiter

Use a fixed length

If the data has a delimiter, you can use a buffered reader to read the data

until the delimiter is found.

If the data has a fixed length, you must send the length of the data before

sending the data itself.

•

•

// End of transmission character

String EOT = "\u0004";

// Read data until the delimiter is found

String line;

while ((line = in.readLine()) != null && !line.equals(EOT)) {

System.out.println(

"[Server " + SERVER_ID + "] received data from client: " + line

);

}

// Send the length of the data

out.write("DATA_LENGTH " + data.length() + "\n");

// Send the data

out.write(data);

// Read the length of the data

String[] parts = in.readLine().split(" ");

int dataLength = Integer.parseInt(parts[1]);

// Read the data

for (int i = 0; i < dataLength; i++) {

System.out.print((char) in.read());

}

9 Processing data from streams

Handling one client at a time

A server that handles one client at a time is called single-threaded, or

single-threaded server.

A single-threaded server is quite simple to implement:

It creates a socket to listen for incoming connections.

When a connection is accepted, it creates a socket to communicate with

the client.

It then reads the data sent by the client and sends a response.

The main drawback of a single-threaded server is that it can only handle

one client at a time. If another client tries to connect, it will have to wait

until the first client is disconnected.

An analogy is to think of a single-threaded server as a restaurant with only

one table. If a customer is already sitting at the table, another customer will

have to wait until the first customer leaves.

A single-threaded server is therefore not suitable for production. It is

suitable for testing and learning purposes. In order to manage multiple

clients, a server must handle multiple sockets.

Multiple ways exist to handle multiple sockets at the same time and is

called concurrency.

1.

2.

3.

10 Handling one client at a time

Handling multiple clients with

concurrency

Concurrency is the ability of an application to handle multiple clients at the

same time.

There are multiple ways to handle multiple clients with concurrency (among

others):

Multi-processing

Multi-threading

Asynchronous programming

Java has a package for concurrency called java.util.concurrent.

In this course, we will focus on multi-threading but the other methods are

equally valid and interesting to learn.

Multi-processing

Multi-processing is the ability of an application to handle multiple

processes at the same time.

A process is a program in execution. It is identified by a process ID.

A process has its own memory space. It cannot access the memory space of

another process.

The main process is the process that is created when the application starts.

It creates other processes to handle multiple clients.

A process is a heavy-weight object. It is quite expensive to create and

destroy as it is a copy of the main process.

Processes can communicate with each other using inter-process

communication (IPC) but it is quite complex to implement.

•

•

•

11 Handling multiple clients with concurrency

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html

An analogy is to think of a process as restaurant chain with multiple

restaurant. Each restaurant has only one table and can handle one

customer. If a customer is already sitting at a table of a given restaurant,

another customer can sit at a table at another restaurant.

Multi-threading

Multi-threading is the ability of an application to handle multiple threads at

the same time.

A thread is a sequence of instructions that can be executed independently

of the main thread.

The main thread is the thread that is created when the application starts.

It creates other threads to handle multiple clients.

Each thread has its own stack and its own program counter.

A thread is therefore quite similar to a process, except that it shares the

same memory space as the other threads. It is therefore much cheaper to

create and destroy than a process (but still more expensive than a simple

object).

Threads can communicate with each other using shared memory.

Threads are more lightweight than processes but their number is limited by

the operating system.

There are two ways to manage threads:

Unlimited threads

Thread pool that limits the number of threads

When discussing the unlimited threads approach, an analogy is to think of a

restaurant with no tables at all. When a new customer arrives, the

restaurant manager adds a new table for the customer. Each table can

handle one customer.

Using this approach, the more customers arrive, the more tables are added.

This approach is not suitable for production as space and resources are

limited.

•

•

12 Handling multiple clients with concurrency

When discussing the thread pool approach, an analogy is to think of a

restaurant with a limited number of tables. When a new customer arrives,

the restaurant manager checks if a table is available. If a table is available,

the customer can sit at the table. If no table is available, the customer will

have to wait until a table is available.

Using this approach, the number of tables is limited. This approach is

suitable for production as space and resources are managed and limited.

Asynchronous programming

Asynchronous programming is the ability of an application to handle

multiple tasks at the same time, without blocking the main thread.

Using asynchronous programming, the main thread can perform other tasks

while waiting for a task to complete.

Asynchronous programming is based on the concept of callbacks. A callback

is a function that is called when a task is completed.

An analogy is to think of asynchronous programming as a food truck

without any tables. Once a customer wants something to eat, the person

managing the food truck gives the customer a ticket. The customer then

waits until the food is ready but can do other things in the meantime.

Once the food is ready, the person managing the food truck calls the

customer. The customer then comes to the food truck to get the food.

Asynchronous programming is quite complex to implement. It is therefore

not covered in this course.

Node.js is a good example of asynchronous programming.

13 Handling multiple clients with concurrency

https://nodejs.org/

Practical content

Get the required files

In this section, you will retrieve the latest changes from the heig-vd-dai-

course/heig-vd-dai-course-code-examples repository.

Get the latest changes from the code examples

Pull the latest changes from the previously cloned heig-vd-dai-course/heig-vd-

dai-course-code-examples repository or clone it if you have not done it yet.

Explore the code examples

In the 12-java-tcp-programming directory, checkout the README.md file to learn

how to run the code examples.

Take some time to explore the code examples.

Send an email using a SMTP client written in Java with the

Socket API

In this section, you will learn how to send an email using the SMTP protocol

using the Java Socket API.

Start MailHog

Just as in the SMTP and Telnet chapter, start MailHog in order to receive the

emails sent by the Java code examples.

Compile and run the SMTP client

In the 12-java-tcp-programming directory, compile and run the SmtpClientExample

code example.

14 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/15-smtp-and-ncat

The mail has been sent to the MailHog SMTP server. You can check it in the

MailHog Web interface at http://localhost:8025.

Take some time to explore the code example. You should notice the

commands are the same as the ones used with Telnet but in an automated

way!

Run full client/server examples

Explore and run the code examples

In the 12-java-tcp-programming directory, checkout the README.md file to learn

how to run the code examples.

Take some time to explore the code examples. Run them and see what they

do.

Note

Please be aware that the TcpServerVirtualThreadTextualExample example must be

run with Java 21 or later. It is not mandatory to run this example but you

must understand how it works.

This example is not compatible with Java 17 but is already available in the

code examples repository for future use.

Answer the following questions

Using the official Java documentation, can you explain the differences

between the following different implementations? When should you use

one or the other and why?

TcpServerSimpleTextualExample

TcpServerSingleThreadTextualExample

TcpServerMultiThreadTextualExample

TcpServerCachedThreadPoolTextualExample

Compile the example

javac SmtpClientExample.java

Run the example

java SmtpClientExample

•

•

•

•

15 Practical content

http://localhost:8025

TcpServerFixedThreadPoolTextualExample

TcpServerVirtualThreadTextualExample

Are you able to explain why the TcpServerSingleThreadTextualExample does not

work as expected?

Share your findings

Share your results in the GitHub Discussions of this organization: https://

github.com/orgs/heig-vd-dai-course/discussions.

Create a new discussion with the following information:

Title: DAI 2024-2025 - Concurrent Java TCP servers - First name Last

Name

Category: Show and tell

Description: Answer the questions for this section. Add links to the

official Java documentation to support your answers.

This will notify us that you have completed the exercise and we can check

your work.

You can compare your solution with the official one stated in the Solution

section, however, we highly recommend you to try to complete the practical

content by yourself first to learn the most.

Go further

This is an optional section. Feel free to skip it if you do not have time.

Based from the code examples, are you able to create a complete TCP

client/server application in Java that implement the DAI protocol

presented in chapter Define an application protocol? Feel free to create

a new repository for this and share it with us in a new discussion on

GitHub Discussions!

•

•

•

•

•

•

16 Practical content

https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol

Conclusion

What did you do and learn?

In this chapter, you have learned how to use the Socket API to create your

own TCP clients and servers in Java.

You have also learned how to handle multiple clients at the same time

using concurrency.

You now have all the knowledge to create your TCP network applications.

This is a big step forward!

You are now able to create your own network applications, such as a chat

server, a file server, a web server, etc. Congratulations!

Test your knowledge

At this point, you should be able to answer the following questions:

What is a socket?

What is the difference between a server socket and a client socket?

What is the purpose of concurrency?

Cite three ways to handle multiple clients with concurrency.

•

•

•

•

17 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

18 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/116

What will you do next?

You will start the practical work!

19 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it!

•

20 Additional resources

Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

21 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions

Sources

Main illustration by Carl Nenzen Loven on Unsplash•

22 Sources

https://unsplash.com/@archduk3
https://unsplash.com/photos/N8GdKC4Rcvs

	Java network concurrency - Course material
	Table of contents
	Objectives
	TCP
	The Socket API
	Client/server common methods
	Client workflow and methods
	Server structure and methods

	Processing data from streams
	Variable length data

	Handling one client at a time
	Handling multiple clients with concurrency
	Multi-processing
	Multi-threading
	Asynchronous programming

	Practical content
	Get the required files
	Get the latest changes from the code examples
	Explore the code examples

	Send an email using a SMTP client written in Java with the Socket API
	Start MailHog
	Compile and run the SMTP client

	Run full client/server examples
	Explore and run the code examples
	Answer the following questions
	Share your findings

	Go further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Sources

