
Practical work 2
https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/16-practical-work-2/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/16-practical-work-2/16-practical-work-2-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md


Table of contents

Table of contents

Introduction

Objectives

Group composition

Idea validation

Grading criteria

Category 1 - Git, GitHub and Markdown

Category 2 - Java, IntelliJ IDEA and Maven

Category 3 - Docker and Docker Compose

Category 4 - Define an application protocol

Category 5 - Java TCP/UDP programming

Category 6 - Java network concurrency

Category 7 - Presentation and questions

Constraints

Tips

Create diagrams

Extract the command and parameters from the message

The POSIX standard

Submission

Presentations

Grades and feedback

Finished? Was it easy? Was it hard?

Sources

• 

• 

• 

• 

• 

• 

 

 

 

 

 

 

 

• 

• 

 

 

 

• 

• 

• 

• 

• 

2 Table of contents



Introduction

Network applications are everywhere. They are used to communicate, to

play games, to watch videos, to listen to music, to browse the web, to send

emails, etc.

In this practical work, you will create your own network application.

The network application will be defined by an application protocol and two

processes that communicate over the network.

The application protocol and the network protocol(s) it uses (TCP and/or

UDP) will be defined by you.

Feel free to be creative! For example, you can choose to create a chat

application, a chess game, a shopping list, the simulation of an Internet of

Things (IoT) network, etc. If you do not have any idea, come to see us and

we can give you.

Multiple groups can choose the same application protocol and you can

share your methodology but please do not copy/paste code from other

groups.

3 Introduction



Objectives

Define a network application protocol

Implement a network application that can be used by multiple clients at

the same time using the TCP and/or UDP protocol(s)

Package, publish and run a network application with Docker

• 

• 

• 

4 Objectives



Group composition

You will work in groups of two or three students. You can choose your

partner(s). If you do not have a partner, we will assign you one.

To announce your group, create a new GitHub Discussion at https://

github.com/orgs/heig-vd-dai-course/discussions with the following

information:

Title: DAI 2024-2025 - Practical work 2 - First name Last name member 1,

First name Last name member 2 and First name Last name member 3 (if

applicable)

Category: Show and tell

Description: A quick description of what you will achieve during this

practical work

Important

Please do it a soon as possible, even if you do not have a clear idea yet as

it will help us to plan the practical work presentations.

Please refer to the grading criteria to know what is expected from you.

• 

• 

• 

5 Group composition

https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions


Idea validation

The teaching staff might ask you to change the scope of your practical work

if it is too complex or too simple.

This will ensure that you have a good balance between the complexity of

the practical work and the time you have to complete it.

If you do not have any idea, come to see us and we can help you finding

some ideas.

6 Idea validation



Grading criteria

0 point - The work is insufficient

0.1 point - The work is done

0.2 point - The work is well done (without the need of being perfect)

Maximum grade: 25 points * 0.2 + 1 = 6

Important

While the grading criteria might not be as detailed as in the previous

practical works for each section, you must continue to apply all the good

practices you have learned so far.

If elements that are supposed to be acquired through the course or

previous practical works are omitted, forgotten or poorly implemented, we

might penalize you.

Remember the UNIX philosophy and the KISS principle: Keep it simple, silly!

Category 1 - Git, GitHub and Markdown

# Criterion Points

1
The README is well structured and explains the purpose of

your network application so new users can understand it
0.2

2

The README explains how to use your network application

with examples and outputs so a new user/developer can

understand your network application without having to run it

locally

0.2

3

The README describes explicit commands to clone and build

your network application with Git and Maven so new

developers can start and develop your project on their own

computer

0.2

• 

• 

• 

7 Grading criteria



Category 2 - Java, IntelliJ IDEA and Maven

# Criterion Points

4

The codebase is well structured, easy to access, easy to

understand and is documented so it is easier for new comers

to understand the codebase

0.2

Category 3 - Docker and Docker Compose

# Criterion Points

5

The network application is packaged and published to GitHub

Container Registry with Docker so other people can use your

network application with Docker

0.2

6
The README describes explicit commands to build and

publish your network application with Docker
0.2

7

The README explains how to use your network application

with Docker (docker run is enough for this practical work, no

need to use Docker Compose)

0.2

Category 4 - Define an application protocol

# Criterion Points

8
The repository contains the application protocol that

describes your network application
0.2

9
The application protocol defines the overview of the

network application
0.2

10
The application protocol defines the transport protocol(s)

the network application uses
0.2

11
The application protocol defines the available messages/

actions/commands for the client/server to communicate
0.2

12
The application protocol defines the success/error codes

and their explanations
0.2

13
The application protocol is described using successful and

unsuccessful examples with one or multiple diagrams
0.2

8 Grading criteria



Category 5 - Java TCP/UDP programming

# Criterion Points

14
The server starts/listens on the defined port(s) by default

(you must be able to change it if needed)
0.2

15
The client accesses the server on a given host (you must be

able to change it)
0.2

16
The client accesses the server on the defined port(s) by

default (you must be able to change it if needed)
0.2

17
The client and server exchange messages/actions/

commands to interact with each other
0.2

18

The client and server correctly process the messages/

actions/commands and with their edge-cases in case a

problem occurs

0.2

19
The client and server are compatible across operating

systems/languages
0.2

20
The client and server correctly manage resources in case a

problem occurs
0.2

Category 6 - Java network concurrency

# Criterion Points

21
The network application accepts connections from multiple

clients at the same time
0.2

22
The data structures used in the network application are

resilient to concurrent accesses
0.2

Category 7 - Presentation and questions

# Criterion Points

23

The application is presented and a demo is made as you

would do it to a colleague/another team/boss/client/

investor so they can understand what you created, why and

how

0.2

24 0.2

9 Grading criteria



# Criterion Points

The presentation is clear and well prepared - everyone

speaks during the presentation

25 The answers to the questions are correct 0.2

10 Grading criteria



Constraints

The application must be written in Java, compatible with Java 21

The application must be built using Maven with the maven-shade-plugin

plugin

The application must use the picocli dependency

You can only use the Java classes seen in the course

Your application must be slightly more complex and slightly different

than the examples presented during the course (we emphasize the word

slightly, no need to shoot for the moon!)

• 

• 

• 

• 

• 

11 Constraints



Tips

Create diagrams

You can use PlantUML, draw.io, scans paper diagrams or any other tools you

want to create your diagrams.

PDF, PNG, SVG, etc. are all accepted formats in your repository.

Extract the command and parameters from the message

The Short Message Service (SMS) protocol presented in the "Define an

application protocol" chapter (accessible in the examples repository

repository) defines the following message:

This message is sent by the server to a client to inform them that they have

received a message from another user.

The command is RECEIVE and the parameters are <message> and <username>.

The message can be up to 100 characters long.

You can use the following snippet of code to extract the command and the

parameters from the message:

RECEIVE <message> <username>

// Extract the command and the parameters from the message and store them in a

// List. The first element of the List is the command and the second element is

// the parameters.

//

// The second parameter of the split method is the maximum number of parts

// that can be created. If the message contains more than one space, the

// remaining parts will be added to the last part.

List<String> messageParts = Arrays.asList(emitterMessage.split(" ", 2));

// Get the command from the message

String command = messageParts.get(0);

12 Tips

https://plantuml.com/
https://draw.io/
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples


// Switch on the command

switch (command) {

// Other cases can be defined here...

case "RECEIVE" -> {

// We check that the message contains at least two parts (the command and

// its parameters). If not, the message is invalid (from the application

// protocol) and we ignore it (or we can send an error message to the

// client).

if (messageParts.size() < 2) {

System.out.println("Invalid message, ignoring...");

break;

}

// Get the parameters from the message

List<String> parameters = Arrays.asList(messageParts.get(1).split(" "));

// Check that the parameters contains at least two parts (the message and

// the user). If not, the message is invalid and we ignore it (or we can

// send an error message to the client).

if (parameters.size() < 2) {

System.out.println("Invalid message, ignoring...");

break;

}

// Get (and remove) the user from the parameters (the last part)

String user = parameters.removeLast();

// Join the remaining parts with a space to form the message

String message = String.join(" ", parameters);

// Do something with the message and the user

System.out.printf("Message from %s: %s\n", user, message);

}

// Other cases can be defined here...

}

13 Tips



The POSIX standard

The Portable Operating System Interface (POSIX) standard is a family

of standards specified by the IEEE Computer Society for maintaining

compatibility between operating systems. POSIX defines both the

system and user-level application programming interfaces (APIs),

along with command line shells and utility interfaces, for software

compatibility (portability) with variants of Unix and other operating

systems.

https://en.wikipedia.org/wiki/POSIX

Not all programs are/can be POSIX compliant. But if you try to comply with

the POSIX standard, you will be able to run your program on various

operating systems without any issues.

14 Tips

https://en.wikipedia.org/wiki/POSIX


Submission

Your work is due as follow:

DAI-TIC-B (Monday mornings): 01.12.2024 23:59

DAI-TIC-C (Friday mornings): 05.12.2024 23:59

Caution

Each day of delay will result in a penalty of -1 point on the final grade.

You must update the GitHub Discussion you created previously with the

following information:

Description: The link to your repository as well as the commit hash you

want to submit

Caution

If you do not update the GitHub Discussion with the link to your repository

and the commit hash before the deadline, it is considered as a late

submission and you will be penalized.

• 

• 

• 

15 Submission



Presentations

The practical work presentations will take place in room TBD (next to the

stairs) on:

DAI-TIC-B (Monday mornings): 02.12.2024

DAI-TIC-C (Friday mornings): 06.12.2024

We only have TBD minutes per group. You decide what you want to show us

and how you want to present it.

Come 5 minutes before your time slot (mentioned in the presentation) with

your computer. You will have access to a video projector.

Please state your group on GitHub Discussions before next week. This will

allow us to prepare the order of presentation.

• 

• 

16 Presentations



Grades and feedback

Grades will be entered into GAPS, followed by an email with the feedback.

The evaluation will use exactly the same grading grid as shown in the

course material.

Each criterion will be accompanied by a comment explaining the points

obtained, a general comment on your work and the final grade.

If you have any questions about the evaluation, you can contact us!

17 Grades and feedback



Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this practical work?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

18 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/117


Sources

Main illustrations by Rafael Rex Felisilda on Unsplash and Jorge Ramirez

on Unsplash

• 

19 Sources

https://unsplash.com/@rafaelrex
https://unsplash.com/photos/chess-pieces-on-chess-board-rCxTJlaU5Yc
https://unsplash.com/@jorgedevs
https://unsplash.com/photos/a-cell-phone-tower-in-a-park-with-a-lake-in-the-background-0vmMg1r7FRU

	Practical work 2
	Table of contents
	Introduction
	Objectives
	Group composition
	Idea validation
	Grading criteria
	Category 1 - Git, GitHub and Markdown
	Category 2 - Java, IntelliJ IDEA and Maven
	Category 3 - Docker and Docker Compose
	Category 4 - Define an application protocol
	Category 5 - Java TCP/UDP programming
	Category 6 - Java network concurrency
	Category 7 - Presentation and questions

	Constraints
	Tips
	Create diagrams
	Extract the command and parameters from the message
	The POSIX standard

	Submission
	Presentations
	Grades and feedback
	Finished? Was it easy? Was it hard?
	Sources


