
HTTP and curl - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/21-ssh-and-scp/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/21-ssh-and-scp/21-ssh-and-scp-course-material.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

Disclaimer

Prepare and setup your environment

curl

Javalin

HTTP

HTTP versions

HTTP resources

URL encoding

HTTP request methods

HTTP request and response format

HTTP response status codes

HTTP path parameters, query parameters and body

HTTP headers

HTTP content negotiation

HTTP sessions (stateless vs. stateful)

API design

Simple APIs with CRUD operations

REST APIs

Simple API with CRUD operations example

How to document an API

How to persist data

How to secure an API

Share your project

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Solution

Sources

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Objectives

So far in the course, you have built network applications using the TCP and

UDP protocols.

You have mastered these protocols and you are now able to build network

applications using them.

TCP and UDP are low-level protocols. They are used to transfer data

between computers. They do not define how the data should be structured.

It is up to the developers to define how the data should be structured,

using an application protocol, for example.

This is where the HTTP protocol comes into play.

In this final part, you will learn how to use the HTTP protocol to build

network applications using all the features offered by this protocol.

This will allow you to build more complex network applications, built on top

of a solid foundation: HTTP.

As HTTP offers many features and is a very complex protocol, this chapter

will be a mixed between theory and practice to introduce you to the most

important concepts.

3 Objectives

Disclaimer

In this chapter, you will learn and experiment with the HTTP protocol. We

will focus on the version 1.1 of the protocol as it is the most used version

today and is supported by all browsers. Other versions of the protocol will

be mentioned but will not be covered in details.

You will also experiment with HTTP with the help of Javalin.

Javalin is a lightweight web framework for Java and Kotlin. It is built on top

of Jetty.

Even though you will have a good understanding of HTTP at the end of this

chapter, this is not a web course.

The web is a complex ecosystem with many different technologies. HTTP is

only one of them. You will see other technologies in future courses.

Javalin is the perfect tool to learn and experiment with HTTP. However, it is

not a production-ready library. It is only meant to be used for learning

purposes and for prototyping.

If you want to develop a network application using HTTP that you want to

use in production, you will have to use a third-party library such as Quarkus

or Spring Boot.

As these libraries are out of the scope of this course (and mostly because

you will see them details in future courses), we will not use them.

4 Disclaimer

https://javalin.io/
https://eclipse.dev/jetty/
https://quarkus.io/
https://spring.io/projects/spring-boot

Prepare and setup your

environment

curl

In this section, you will start curl using its official Docker image available on

Docker Hub: https://github.com/curl/curl-container.

curl is a command line tool used to transfer data over the Web. It supports

numerous protocols including HTTP, HTTPS, FTP, FTPS, SFTP, etc.

curl is a very powerful tool. It is used by developers to test their APIs.

Start and configure curl

To start curl, run the following command:

The output should be similar to the following:

Now start the container overwriting the default entrypoint to access the

container:

Pull the Docker image

docker pull curlimages/curl:latest

Start the Docker image

docker run --rm curlimages/curl:latest

Unable to find image 'curlimages/curl:latest' locally

latest: Pulling from curlimages/curl

96526aa774ef: Already exists

b3ed3d59459c: Pull complete

4f4fb700ef54: Pull complete

Digest: sha256:4a3396ae573c44932d06ba33f8696db4429c419da87cbdc82965ee96a37dd0af

Status: Downloaded newer image for curlimages/curl:latest

curl: try 'curl --help' or 'curl --manual' for more information

5 Prepare and setup your environment

https://curl.se/
https://github.com/curl/curl-container

The output should be similar to the following:

You are now in the container. You should be able to use curl inside the

container for the following sections. To exit the container, type exit and

press Enter.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Bruno

Insomnia

Postman

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it!

Javalin

In this section, you will create a new Maven project and add Javalin to the

project.

Javalin is a lightweight web framework for Java and Kotlin. It is built on top

of Jetty.

Create and configure a new IntelliJ IDEA project

Create a new IntelliJ IDEA project as seen in the Java, IntelliJ IDEA and Maven

chapter.

Start the Docker image

docker run --rm -it --entrypoint /bin/sh curlimages/curl:latest

~ $

•

•

•

•

6 Prepare and setup your environment

https://github.com/usebruno/bruno
https://insomnia.rest/
https://www.postman.com/
https://javalin.io/
https://eclipse.dev/jetty/
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/04-java-intellij-idea-and-maven

Add Javalin to the project

Add the latest stable version of Javalin available in the Maven repository:

https://mvnrepository.com/artifact/io.javalin/javalin to the pom.xml file as

seen in previous chapters:

As stated in the official documentation, the pom.xml file must be slightly

modified to correctly use the Maven shade plugin.

Update the following properties to the pom.xml file with the following

content:

<!-- https://mvnrepository.com/artifact/io.javalin/javalin-bundle -->

<dependency>

 <groupId>io.javalin</groupId>

 <artifactId>javalin-bundle</artifactId>

 <version>5.6.3</version>

</dependency>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-shade-plugin</artifactId>

 <version>3.5.0</version>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>shade</goal>

 </goals>

 <configuration>

 <transformers>
 <transformer

implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

 <mainClass>ch.heigvd.dai.Main</mainClass>

 </transformer>
 <transformer

implementation="org.apache.maven.plugins.shade.resource.DontIncludeResourceTransformer">

 <resource>MANIFEST.MF</resource>

 </transformer>

 </transformers>

7 Prepare and setup your environment

https://mvnrepository.com/artifact/io.javalin/javalin
https://javalin.io/tutorials/docker

The difference with the previous pom.xml file is the addition of the filters

section. This section is required to correctly use the Maven shade with

Javalin.

Update the Main.java file

Update the Main.java file with the following code:

 <filters>

 <filter>

 <artifact>*:*</artifact>

 <excludes>

 <exclude>META-INF/*.SF</exclude>

 <exclude>META-INF/*.DSA</exclude>

 <exclude>META-INF/*.RSA</exclude>

 </excludes>

 </filter>

 </filters>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

package ch.heigvd;

import io.javalin.Javalin;

public class Main {

public static final int PORT = 8080;

public static void main(String[] args) {

 Javalin app = Javalin.create();

 app.get("/", ctx -> ctx.result("Hello, world!"));

 app.start(PORT);

}

}

8 Prepare and setup your environment

Run the application and open your browser at http://localhost:8080. You

should see the following:

Using curl, you can also access the server:

The host host.docker.internal is a special host that allows you to access the

host from inside the container. If you do not use curl inside a container, you

can use localhost instead.

The output should be the same as in the browser.

This file will be our starting point for the next sections. In future sections,

we will refer to this file as Main.java.

Explore and understand the code

Let's take a look at the code.

This line creates a new Javalin instance.

This line creates a new context for the server. A context is a path on the

server. In this case, the context is /. This means that the server will respond

to requests to the path / using the GET method (more on this later).

The second parameter is a HTTP handler. It is a functional interface that

defines a method to handle HTTP requests. In this case, the method is a

lambda expression that sends a response to the client. A lambda expression

is a way to define a method in a more concise way, sometimes called an

anonymous method.

Hello, world!

Send a GET request to the server

curl "http://host.docker.internal:8080"

Javalin app = Javalin.create();

app.get("/", ctx -> ctx.result("Hello, world!"));

// Example of a lambda expression

() -> System.out.println("Hello, world!");

// Example of a lambda expression with parameters

(String name) -> System.out.println("Hello, " + name + "!");

9 Prepare and setup your environment

http://localhost:8080
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

This line will start the server on the port 8080. You might have noticed that

no concurrency is specified. This is because Javalin uses good defaults that

they describe in their documentation. You will not have to worry about

concurrency in this chapter as Javalin will handle it for you.

You now have a basic HTTP server running on your computer. It is time to

learn more about HTTP!

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Quarkus

Spring Boot

Missing item in the list? Feel free to open a pull request to add it!

Resources

Resources are here to help you. They are not mandatory to read.

Javalin documentation

Missing item in the list? Feel free to open a pull request to add it!

app.start(PORT);

•

•

•

10 Prepare and setup your environment

https://javalin.io/documentation#concurrency
https://quarkus.io/
https://spring.io/projects/spring-boot
https://javalin.io/documentation

HTTP

Hyper Text Transfer Protocol (HTTP) is a protocol used to transfer data over

the Web based on TCP. It is a client-server protocol based on the request-

response pattern: a client (called user agent in the HTTP specification)

sends a request to a server, the server processes the request and sends a

response to the client.

A client can be a web browser, a command line tool, a mobile application,

etc.

The client requests a resource from the server. A resource can be a web

page, an image, a video, etc.

HTTP was initiated by Tim Berners-Lee at CERN in 1989. It was first used in

1990 to transfer HyperText Markup Language (HTML) documents.

HTML is a markup language used to create web pages that interconnect with

each other. It is the primary language used to create web pages.

Over the years, HTTP and HTML have evolved. HTTP is now used to transfer

different types of data (HTML, CSS, JavaScript, images, videos, etc.).

Built on top of TCP (until HTTP/2) and UDP (since HTTP/3), HTTP offers

numerous features that make it a very powerful protocol.

Servers typically listen on the TCP port 80 for HTTP and 443 for HTTPS.

HTTP versions

There are several versions of HTTP. The most used are HTTP/1.1, HTTP/2 and

HTTP/3.

Each version of HTTP saw the introduction of many features over the years.

The different versions are:

HTTP/0.9 (1989)

HTTP/1.0 (1996)

•

•

11 HTTP

HTTP/1.1 (1997)

HTTP/2 (2015)

HTTP/3 (2022)

Most features are retro-compatible. This means that a client using HTTP/1.1

can communicate with a server using HTTP/2.

As of today, HTTP/1.1 and HTTP/2 are still the most used versions of HTTP.

HTTP/0.9

The first version of HTTP was HTTP/0.9 in 1989. It was a very simple protocol

only meant to transfer HTML documents.

HTTP/1.0

HTTP/1.0 was released in 1996. It introduced many features that are still

used today (among others):

HTTP headers

HTTP status codes

HTTP methods

Documents other than HTML (images, videos, etc.) are supported

•

•

•

TLS 1.3TLS 1.2+TLS/SSL
(optional)

TCP TCP UDP

HTTP 1.1 HTTP/2
HTTP/3

•

•

•

•

12 HTTP

HTTP/1.1

HTTP/1.1 was released in 1997, an improved and faster version of HTTP/1.0. It

introduced many features that are still used today (among others):

Persistent connections - The connection between the client and the

server is kept alive after the response is sent. This allows the client to

send multiple requests over the same connection. Which is more

efficient.

Additional cache control features

Content negotiation - The client can ask for a specific version of a

resource (HTML, CSS, etc.)

Thanks to the Host header, it is possible to host multiple websites on the

same server

HTTP/2

HTTP/2 was released in 2015. The biggest change is the use of a binary

protocol instead of a text protocol. This makes it more efficient.

As no much new features were introduced, HTTP/2 was quickly adopted by

the industry.

HTTP/3

HTTP/3 is the latest version of HTTP. It was released in 2022. It is based on

the QUIC protocol instead of TCP. QUIC is based on the UDP protocol,

making it more efficient.

The main point of HTTP/3 is to make the Web faster and more secure, using

a more efficient protocol based on UDP.

HTTP resources

A resource is identified by an Uniform Resource Locator (URL). A resource

can be a web page, an image, a video, etc. A resource can be sometimes be

called an endpoint (URL + method) or a route.

•

•

•

•

13 HTTP

https://en.wikipedia.org/wiki/URL

A resource can be static (an JPEG image) or dynamic (a web page generated

by a server). A static resource is a file stored on a server. A dynamic

resource is generated by a server (data returned in JSON or YAML format -

more on this later).

Let's take a look at the following URL (the "Fiche d'unité" of the current

course in GAPS):

https://gaps.heig-vd.ch/consultation/fiches/uv/uv.php?id=6573

The URL is composed of the following parts:

The protocol (http or https)

The host (e.g. gaps.heig-vd.ch)

The port number (optional, e.g. :80 for HTTP or :443 for HTTPS)

The path to the resource (e.g. /consultation/fiches/uv/uv.php)

The query parameters (optional, e.g. ?id=6573)

The URL can also contain the following parts:

The path parameters (optional, e.g. /users/{user-id}/view, where {user-id} is

a path parameter)

A subdomain (optional, e.g. gaps in gaps.heig-vd.ch)

The host is sometimes called the domain name or the fully qualified

domain name (FQDN). It is composed of the following parts:

The subdomain (optional, e.g. gaps in gaps.heig-vd.ch)

The domain name (e.g. heig-vd)

The top-level domain (e.g. ch)

This resource is a web page that returns a HTML document. The server will

process the request and send the HTML of the web page to the client.

URL encoding

URLs can only contain a limited set of characters. Some characters are

reserved and cannot be used in URLs. For example, the space character

cannot be used in URLs.

To send data to the server, you will have to encode the data using the URL

encoding (officially known as percent-encoding) format.

•

•

•

•

•

•

•

•

•

•

14 HTTP

https://gaps.heig-vd.ch/consultation/fiches/uv/uv.php?id=6573
https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Percent-encoding

URL encoding replaces unsafe ASCII characters with a % followed by two

hexadecimal digits. URLs cannot contain spaces. Spaces are replaced by %20.

For example, the string Hello world will be encoded as Hello%20world.

Here is a list of the most common characters that must be encoded:

Character Encoding

Space %20

! %21

" %22

%23

$ %24

% %25

& %26

' %27

(%28

) %29

* %2A

+ %2B

, %2C

/ %2F

: %3A

; %3B

= %3D

? %3F

@ %40

[%5B

] %5D

This will be useful in the next sections.

15 HTTP

HTTP request methods

In order to get a resource from a server, the client must send a request to

the server.

The request is defined by a method. The most used methods are:

GET - Get a resource (default method - a browser always requests a

resource using the HTTP method GET by default)

POST - Create a new resource

PATCH - Partially update a resource

PUT - Update a resource (replace the resource - idempotent)

DELETE - Delete a resource

Other methods exist but are out of the scope of this course.

Let's update the Main.java file to demonstrate this:

•

•

•

•

•

package ch.heigvd;

import io.javalin.Javalin;

public class Main {

public static final int PORT = 8080;

public static void main(String[] args) {

 Javalin app = Javalin.create();

 app.get("/", ctx ->

 ctx.result("Hello, world from a GET request method!")

);

 app.post("/", ctx ->

 ctx.result("Hello, world from a POST request method!")

);

 app.patch("/", ctx ->

 ctx.result("Hello, world from a PATCH request method!")

);

 app.delete("/", ctx ->

 ctx.result("Hello, world from a DELETE request method!")

);

16 HTTP

We have added a new context for each HTTP method. Each context will

respond to the corresponding HTTP method. You might have noticed that

we have used the same context for each method. This is because the HTTP

method is part of the request.

Run the application and open your browser at http://localhost:8080. You

should see the following:

Now, let's try to send a POST request to the server using curl:

The -X option tells curl to use to set the HTTP method.

You should see the following:

Try the other methods using curl:

You should see the different responses.

These methods are used to interact with resources on the server. For

example, if you want to create a new user, you will send a POST request to

the server. If you want to update a user, you will send a PATCH or PUT request

to the server. If you want to delete a user, you will send a DELETE request to

the server.

 app.start(PORT);

}

}

Hello, world from a GET request method!

curl -X POST "http://host.docker.internal:8080"

Hello, world from a POST request method!

Send a PATCH request to the server

curl -X PATCH "http://host.docker.internal:8080"

Send a DELETE request to the server

curl -X DELETE "http://host.docker.internal:8080"

17 HTTP

http://localhost:8080

HTTP request and response format

As seen in the previous section, in order to get a resource from a server, the

client must send a request to the server. The request contains the following

information:

The HTTP method

The URL of the resource

The supported HTTP version

Some HTTP headers

The HTTP body (optional)

The query parameters (optional)

The cookies (optional)

The content type (optional)

The server processes the request and sends a response to the client. The

response contains the following information:

The HTTP version

The HTTP status code

The HTTP headers

The HTTP body (optional)

The cookies (optional)

The content type (optional)

The content length (in HTTP/1.1)

The content encoding (optional)

You will learn more in details about these elements in the next sections but

it is important to understand the structure of a HTTP request and response.

Structure of a HTTP request

A HTTP request is structured as follows:

An example of a HTTP request:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

<HTTP method> <URL> HTTP/<HTTP version>

<HTTP headers>

<Empty line>

<HTTP body (optional)>

18 HTTP

[!IMPORTANT] Do not forget the empty line!

In this example, we request the resource / from the server gaps.heig-vd.ch

using the HTTP method GET.

Some headers as set in the request as well:

Host - The host of the server (gaps.heig-vd.ch in this case)

User-Agent - The user agent that sent the request (curl in this case)

Accept - The content types accepted by the user agent (any type in this

case)

You can reproduce this request using curl:

The -v option tells curl to print the request headers.

The default HTTP method is GET. This means that you can omit the HTTP

method. A browser always requests a resource using the HTTP method GET

by default.

The output should be similar to the following:

GET / HTTP/1

Host: gaps.heig-vd.ch

User-Agent: curl/8.1.2

Accept: */*

•

•

•

Send a GET request to GAPS

curl -v "http://gaps.heig-vd.ch"

* Trying 193.134.218.91:80...

* Connected to gaps.heig-vd.ch (193.134.218.91) port 80 (#0)

> GET / HTTP/1.1

> Host: gaps.heig-vd.ch

> User-Agent: curl/8.1.2

> Accept: */*

>

< HTTP/1.1 200 OK

HTTP/1.1 200 OK

< Date: Mon, 27 Nov 2023 17:27:06 GMT

Date: Mon, 27 Nov 2023 17:27:06 GMT

< Server: Apache

Server: Apache

19 HTTP

The > symbol indicates the request headers sent by the client.

The < symbol indicates the response headers sent by the server.

< Last-Modified: Thu, 23 Feb 2023 15:00:12 GMT

Last-Modified: Thu, 23 Feb 2023 15:00:12 GMT

< ETag: "17df-5f55f450264dd"

ETag: "17df-5f55f450264dd"

< Accept-Ranges: bytes

Accept-Ranges: bytes

< Content-Length: 6111

Content-Length: 6111

< Vary: Accept-Encoding

Vary: Accept-Encoding

< X-Content-Type-Options: nosniff

X-Content-Type-Options: nosniff

< X-Frame-Options: sameorigin

X-Frame-Options: sameorigin

< Content-Type: text/html; charset=ISO-8859-1

Content-Type: text/html; charset=ISO-8859-1

<

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/

TR/html4/loose.dtd">

<html>

<head>

 <title>GAPS/SACHEM</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

 <LINK rel="stylesheet" href="style.css" type="text/css">

 <link rel="shortcut icon" href="/img/favicon.ico" />

</head>

<body>

 [...]

</body>

* Connection #0 to host gaps.heig-vd.ch left intact

</html>

20 HTTP

You can notice the first lines of the request that are sent by curl as

presented earlier:

Structure of a HTTP response

A HTTP response is structured as follows:

An example of a HTTP response from http://gaps.heig-vd:

> GET / HTTP/1.1

> Host: gaps.heig-vd.ch

> User-Agent: curl/8.1.2

> Accept: */*

HTTP/<HTTP version> <HTTP status code> <HTTP status message>

<HTTP headers>

<Empty line>

<HTTP body>

HTTP/1.1 200 OK

Date: Mon, 27 Nov 2023 17:42:47 GMT

Server: Apache

Last-Modified: Thu, 23 Feb 2023 15:00:12 GMT

ETag: "17df-5f55f450264dd"

Accept-Ranges: bytes

Content-Length: 6111

Vary: Accept-Encoding

X-Content-Type-Options: nosniff

X-Frame-Options: sameorigin

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/

TR/html4/loose.dtd">

<html>

<head>

 <title>GAPS/SACHEM</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

 <LINK rel="stylesheet" href="style.css" type="text/css">

 <link rel="shortcut icon" href="/img/favicon.ico" />

</head>

21 HTTP

http://gaps.heig-vd

In this example, the server responds with the resource / using the HTTP

status code 200 (OK).

Some headers as set in the request as well:

Content-Length - The length of the content in bytes (6111 bytes in this

case)

Content-Type - The content type of the resource (text/html in this case)

The server also sends the content of the resource (the HTML) in the body of

the response, separated from the headers by an empty line.

Many other headers are sent by the server. They are not mandatory and

some are out of the scope of this course.

You can reproduce this request using curl:

The -i option tells curl to print the response headers.

You can notice the first lines of the response that are sent by curl as

presented earlier:

<body>

 [...]

</body>

</html>

•

•

Send a GET request to GAPS

curl -i "http://gaps.heig-vd.ch"

HTTP/1.1 200 OK

Date: Wed, 06 Dec 2023 18:01:17 GMT

Server: Apache

Last-Modified: Thu, 23 Feb 2023 15:00:12 GMT

ETag: "17df-5f55f450264dd"

Accept-Ranges: bytes

Content-Length: 6111

Vary: Accept-Encoding

X-Content-Type-Options: nosniff

X-Frame-Options: sameorigin

Content-Type: text/html; charset=ISO-8859-1

22 HTTP

HTTP response status codes

When a client sends a request to a server, the server processes the request

and sends a response to the client.

The response is defined by a status code. Status codes are grouped into five

categories:

1xx - Informational responses

The most common informational response are:

101 - Switching Protocols (the server switches to a different protocol)

102 - Processing (the server is processing the request)

2xx - Successful responses

The most common successful responses are:

200 - OK (the request was successful)

201 - Created (the request was successful and a new resource was

created)

202 - Accepted (the request was accepted but not yet processed)

204 - No Content (the request was successful but the server does not

send any content)

3xx - Redirection messages

The most common redirection messages are:

301 - Moved Permanently (the resource has been moved

permanently to a new URL)

302 - Found (the resource has been moved temporarily to a new

URL)

304 - Not Modified (the resource has not been modified since the

last request)

4xx - Client error responses

The most common client error responses are:

400 - Bad Request (the request is malformed)

401 - Unauthorized (the request requires authentication)

403 - Forbidden (the request is forbidden)

•

•

•

•

23 HTTP

404 - Not Found (the resource does not exist)

405 - Method Not Allowed (the HTTP method is not allowed for this

resource)

409 - Conflict (the request could not be processed because of a

conflict)

410 - Gone (the resource is no longer available and has been

removed)

429 - Too Many Requests (the client has sent too many requests in a

given amount of time)

5xx - Server error responses

The most common server error responses are:

500 - Internal Server Error (the server encountered an unexpected

condition that prevented it from fulfilling the request)

501 - Not Implemented (the server does not support the

functionality required to fulfill the request)

502 - Bad Gateway (the server received an invalid response from an

upstream server)

503 - Service Unavailable (the server is currently unable to handle

the request due to a temporary overload or scheduled

maintenance)

504 - Gateway Timeout (the server did not receive a timely response

from an upstream server)

The default status code is 200 (OK). This means that you can omit the status

code.

Let's update the Main.java file to demonstrate this:

•

package ch.heigvd;

import io.javalin.Javalin;

import io.javalin.http.HttpStatus;

public class Main {

public static final int PORT = 8080;

public static void main(String[] args) {

 Javalin app = Javalin.create();

24 HTTP

Now, let's try to send a GET request to the server using curl:

The -v option tells curl to print the request headers.

The output should be similar to the following:

 app.get("/", ctx ->

 ctx
.result("Hello, world from a GET request method with a `HttpStatus.OK` response

status!")

);

 app.post("/", ctx ->

 ctx
.result("Hello, world from a POST request method with a `HttpStatus.CREATED`

response status!")

.status(HttpStatus.CREATED)

);

 app.patch("/", ctx ->

 ctx
.result("Hello, world from a PATCH request method with a `HttpStatus.OK` response

status!")

.status(HttpStatus.OK)

);

 app.delete("/", ctx ->

 ctx
.result("Hello, world from a DELETE request method with a

`HttpStatus.NO_CONTENT` response status!")

.status(HttpStatus.NO_CONTENT)

);

 app.start(PORT);

}

}

curl -v http://host.docker.internal:8080

* Trying 127.0.0.1:8080...

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET / HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/8.1.2

> Accept: */*

>

25 HTTP

The > symbol indicates the request headers sent by the client.

The < symbol indicates the response headers sent by the server.

You will notice that the response status code is 200 (OK), as expected as no

status code was specified.

You will go into more details about HTTP headers in the next sections.

Try the other methods using curl:

The status codes should be the same as in the code. They are defined by

the HttpStatus class and allow to better understand the responses made by

the server and how to handle them.

HTTP path parameters, query parameters and body

In the previous sections, you have seen how to send a request to a server

and how to get a response from the server.

In this section, you will learn how to send data to the server and how to get

data from the server.

< HTTP/1.1 200 OK

< Date: Mon, 04 Dec 2023 14:44:01 GMT

< Content-Type: text/plain

< Content-Length: 78

<

* Connection #0 to host localhost left intact

Hello, world from a GET request method with a `HttpStatus.OK` response status!

Send a POST request to the server

curl -v -X POST "http://host.docker.internal:8080"

Send a PATCH request to the server

curl -v -X PATCH http://host.docker.internal:8080

Send a DELETE request to the server

curl -v -X DELETE http://host.docker.internal:8080

26 HTTP

HTTP path parameters

A HTTP request can contain path parameters. Path parameters are used to

send data to the server such as identifiers, etc.

An example of a path parameter is the following:

With values:

In this example, the path parameter is {user-id}. The server will replace the

path parameter with the actual value of the parameter.

Let's update the Main.java file to demonstrate this by adding a new context

with a path parameter:

In this example, we have added a new context with the path /path-parameter-

demo/{path-parameter}. This context will respond to GET requests.

The context will get the path parameter path-parameter from the request. The

server will then respond with a 200 (OK) status code and a message.

Run the application and open your browser at http://localhost:8080/path-

parameter-demo/Hello%20world.

Let's try to send a GET request to the server using curl:

The output should be similar to the following:

You can notice the URL encoding in the URL (Hello%20world).

/users/{user-id}

/users/123

app.get("/path-parameter-demo/{path-parameter}", ctx -> {

String pathParameter = ctx.pathParam("path-parameter");

 ctx.result("You just called `/path-parameter-demo` with path parameter '" +
pathParameter + "'!");

});

curl http://host.docker.internal:8080/path-parameter-demo/Hello%20world

You just called `/path-parameter-demo` with path parameter 'Hello world'!

27 HTTP

http://localhost:8080/path-parameter-demo/Hello%20world
http://localhost:8080/path-parameter-demo/Hello%20world

Try to access another URL such as http://localhost:8080/path-parameter-

demo/path-parameter/not-found.

The output should be similar to the following:

This is because the server does not know this path. The server will respond

with a 404 (Not Found) status code.

Let's try to send a GET request to the server using curl to display the

response headers:

The output should be similar to the following:

You can notice the 404 status code in the response headers.

HTTP query parameters

A HTTP request can contain query parameters. Query parameters are used

to send data to the server such as filters, search terms, etc.

An example of some query parameters is the following:

In this example, the query parameters are firstName and lastName. The server

will replace the query parameters with the actual values of the parameters.

The query parameters are separated from the path by a ? character. The

query parameters are separated from each other by a & character.

Let's update the Main.java file to demonstrate this by adding a new context

with some query parameters:

Not Found

curl -i http://host.docker.internal:8080/path-parameters-demo/path-parameter/not-
found

HTTP/1.1 404 Not Found

Date: Wed, 06 Dec 2023 17:18:00 GMT

Content-Type: text/plain

Content-Length: 9

Not Found

/users?firstName=John&lastName=Doe

28 HTTP

http://localhost:8080/path-parameter-demo/path-parameter/not-found
http://localhost:8080/path-parameter-demo/path-parameter/not-found

In this example, we have added a new context with the path /query-

parameters-demo. This context will respond to GET requests.

The context will get the query parameters firstName and lastName from the

request. If one of the query parameters is missing, the server will respond

with a 400 (Bad Request) status code.

If the query parameters are present, the server will respond with a 200 (OK)

status code and a message.

Run the application and open your browser at http://localhost:8080/query-

parameters-demo?firstName=John&lastName=Doe.

The output should be similar to the following:

You can notice that the query parameters were replaced by the actual

values (John and Doe). You can also notice that the query parameters are

separated by a & character in the URL.

Now try to access the URL http://localhost:8080/query-parameters-demo.

The output should be similar to the following:

This is because one or both query parameters are missing. The server will

respond with a 400 (Bad Request) status code.

Let's try to send a GET request to the server using curl to display the

response headers:

app.get("/query-parameters-demo", ctx -> {

String firstName = ctx.queryParam("firstName");

String lastName = ctx.queryParam("lastName");

if (firstName == null || lastName == null) {

throw new BadRequestResponse();

}

 ctx.result("Hello, " + firstName + " " + lastName + "!");

});

Hello, John Doe!

Bad Request

29 HTTP

http://localhost:8080/query-parameters-demo?firstName=John&lastName=Doe
http://localhost:8080/query-parameters-demo?firstName=John&lastName=Doe
http://localhost:8080/query-parameters-demo

The output should be similar to the following:

You can notice the 400 status code in the response headers.

HTTP body

A HTTP request can contain a body. The body is used to send data to the

server.

A HTTP response can also contain a body. The body is used to send data to

the client.

The body is optional. It is not mandatory to send a body with a request or a

response. The body is not limited to text. It can contain any type of data

(text, images, videos, etc.) and can be of any size, encoded in any format.

The body is separated from the headers by an empty line.

An example of a body is the following:

Let's update the Main.java file to demonstrate this:

In this example, we have added a new context with the path /body-demo.

This context will respond to POST requests.

The context will get the body from the request. The server will then respond

with a 200 (OK) status code and a message.

curl -i http://host.docker.internal:8080/query-parameters-demo

HTTP/1.1 400 Bad Request

Date: Wed, 06 Dec 2023 17:32:31 GMT

Content-Type: text/plain

Content-Length: 11

Bad Request

Hello, world!

app.post("/body-demo", ctx -> {

String data = ctx.body();

 ctx.result("You just called `/body-demo` with data '" + data + "'!");

});

30 HTTP

As this context responds to POST requests, you will have to use curl to send

a POST request to the server (as your browser sends GET requests by

default):

The -d option tells curl to use to set the body.

The output should be similar to the following:

Let's display the request and response headers:

The output should be similar to the following:

curl -X POST -d "Hello, world!" http://host.docker.internal:8080/body-demo

You just called `/body-demo` with data 'Hello, world!'!

curl -i -v -X POST -d "Hello, world!" http://host.docker.internal:8080/body-demo

You just called `/body-demo` with data 'Hello, world!'!~ $ curl -i -v -X POST -d "Hello,

world!" http://host.docker.internal:8080/body-demo

Note: Unnecessary use of -X or --request, POST is already inferred.

* Trying 192.168.65.254:8080...

* Connected to host.docker.internal (192.168.65.254) port 8080

> POST /body-demo HTTP/1.1

> Host: host.docker.internal:8080

> User-Agent: curl/8.4.0

> Accept: */*

> Content-Length: 13

> Content-Type: application/x-www-form-urlencoded

>

< HTTP/1.1 200 OK

HTTP/1.1 200 OK

< Date: Wed, 06 Dec 2023 17:42:13 GMT

Date: Wed, 06 Dec 2023 17:42:13 GMT

< Content-Type: text/plain

Content-Type: text/plain

< Content-Length: 55

Content-Length: 55

<

* Connection #0 to host host.docker.internal left intact

You just called `/body-demo` with data 'Hello, world!'!

31 HTTP

You can notice the POST method in the request headers and the 200 status

code in the response headers. You can also notice the Content-Length and

Content-Type headers in the request and response headers.

HTTP headers

HTTP headers are used to send additional information in a HTTP request or

response.

HTTP headers are separated from the body by an empty line.

An example of a HTTP header is the following:

In this example, the HTTP header is Content-Type and the value of the header

is text/plain.

HTTP headers are case-insensitive. This means that Content-Type and content-

type are the same.

Here is a list of the most common HTTP headers:

Header Description

Accept The media types accepted by the client

Content-Type
The media type of the body sent by the client or from the

server

Content-

Length
The length of the body sent by the client or the server

User-Agent
The user agent of the client (the browser name and version,

the curl version, etc.)

Host The host of the server

Set-Cookie The cookies set by the server

HTTP content negotiation

Thanks to the Accept header, the client can ask for a specific version of a

resource (HTML, CSS, etc.).

The Accept header is used to specify the media types accepted by the client.

Content-Type: text/plain

32 HTTP

An example of a Accept header is the following:

In this example, the client accepts the media type text/html.

You can find a list of the most common media types on the IANA website.

When requesting a resource, the client can specify the media types it

accepts. The server will then respond with the resource in the media type

that is the closest to the media types accepted by the client.

HTTP does not transfer objects, it transfers representations of objects. This

means that the server can send the same resource in different

representations.

The same resource, i.e. the URL /my-resource, can be sent in different

representations:

Format: HTML, JSON, YAML, PNG, JPEG, etc.

Language: English, French, German, etc.

Encoding: UTF-8, UTF-16, etc.

Let's update the Main.java file to demonstrate this:

Accept: text/html

•

•

•

app.get("/content-negotiation-demo", ctx -> {

String acceptHeader = ctx.header("Accept");

if (acceptHeader == null) {

throw new BadRequestResponse();

}

if (acceptHeader.contains("text/html")) {

 ctx.contentType("text/html");

 ctx.result("<h1>Hello, world!</h1>");

} else if (acceptHeader.contains("text/plain")) {

 ctx.contentType("text/plain");

 ctx.result("Hello, world!");

} else {

throw new NotAcceptableResponse();

}

});

33 HTTP

https://www.iana.org/assignments/media-types/media-types.xhtml

In this example, we have added a new context with the path /content-

negotiation-demo. This context will respond to GET requests.

The context will get the Accept header from the request. If the Accept header

is missing, the server will respond with a 400 (Bad Request) status code.

If the Accept header is present, the server will check if the client accepts the

media type text/html. If the client accepts the media type text/html, the server

will respond with a 200 (OK) status code and a HTML message.

If the client does not accept the media type text/html, the server will check if

the client accepts the media type text/plain. If the client accepts the media

type text/plain, the server will respond with a 200 (OK) status code and a

plain text message.

If the client does not accept the media type text/plain, the server will

respond with a 406 (Not Acceptable) status code.

Run the application and open your browser at http://localhost:8080/

content-negotiation-demo.

You should see the following:

Your browser accepts the media type text/html by default. This is why you

see the HTML message.

Now, try to access the URL http://localhost:8080/content-negotiation-demo

with curl:

The output should be similar to the following:

This is because curl does not accept the media type text/html by default. The

server will respond with a 406 (Not Acceptable) status code.

Let's specify the Accept header to tell the server that we accept the media

type text/plain:

Hello, world!

curl -v -i http://host.docker.internal:8080/content-negotiation-demo

Not Acceptable

curl -H "Accept: text/plain" http://host.docker.internal:8080/content-negotiation-demo

34 HTTP

http://localhost:8080/content-negotiation-demo
http://localhost:8080/content-negotiation-demo
http://localhost:8080/content-negotiation-demo

The output should be similar to the following:

Let's display the request and response headers:

The output should be similar to the following:

You can notice the client Accept header in the request headers and the

Content-Type header in the response headers.

This feature is very useful to serve different versions of a resource to

different clients.

HTTP sessions (stateless vs. stateful)

Stateless and stateful are two terms that are often used in computer

science.

Hello, world!

curl -v -i -H "Accept: text/plain" http://host.docker.internal:8080/content-negotiation-
demo

* Trying 192.168.65.254:8080...

* Connected to host.docker.internal (192.168.65.254) port 8080

> GET /content-negotiation-demo HTTP/1.1

> Host: host.docker.internal:8080

> User-Agent: curl/8.4.0

> Accept: text/plain

>

< HTTP/1.1 200 OK

HTTP/1.1 200 OK

< Date: Wed, 06 Dec 2023 18:11:55 GMT

Date: Wed, 06 Dec 2023 18:11:55 GMT

< Content-Type: text/plain

Content-Type: text/plain

< Content-Length: 13

Content-Length: 13

<

* Connection #0 to host host.docker.internal left intact

Hello, world!

35 HTTP

A stateless application is an application that loses its state when it is

restarted. This means that the application does not store any data on the

disk or a database or stores the data in memory (RAM).

A stateful application is an application that keeps its state when it is

restarted. This means that the application stores data on the disk or a

database.

This concept can be applied to network protocols such as HTTP as well.

HTTP is a stateless protocol: for each request, the server does not know

who the client is or what the client did before. This means that the server

does not keep track of the state of the client over time and there is no way

to know who made a request.

We need to keep track of the state of the client in order to build

applications that are stateful such as a login system, a shopping cart, etc.

Let's illustrate this with an example. Imagine that you have a website with a

few pages that you can access:

A homepage (/ - public)

A login page (/login - public)

A profile page (/profile - private)

The profile page returns the information of the user. This page is private.

This means that you need to log in to access it.

In a stateful protocol, the server keeps track of the state of the client. This

means that the server knows who you are. This means that the server

knows what you did before:

You arrive on the homepage. You can click on a link to access the login

page.

You fill in your username and password and you click on the "Login"

button.

The server checks your credentials and logs you in.

You are now logged in. You can click on a link to access your profile

page.

The server knows who you are. The server knows that you are logged in.

The server can send you the profile page.

•

•

•

1.

2.

3.

4.

5.

36 HTTP

HTTP is not a stateful protocol. This means that the server does not keep

track of the state of the client.

Using the same example as before, in a stateless protocol, the server does

not know who you are. This means that the server does not know what you

did before:

You arrive on the homepage. You can click on a link to access the login

page.

You fill in your username and password and you click on the "Login"

button.

The server checks your credentials and logs you in.

You are now logged in. You can click on a link to access your profile

page.

The server does not know who you are. The server does not know that

you are logged in. The server cannot send you the profile page.

The example above is almost the same as the previous one. The only

difference is that with HTTP, it is up to the developer to implement a way to

keep track of the state of the client and send it to the server with each

request.

In order to achieve this, the server can use HTTP sessions. There are many

ways to implement HTTP sessions. Here are two of them:

Using a query parameter

Using cookies

HTTP sessions using a query parameter

Using the previous example, the server can use a query parameter to keep

track of the state of the client:

Once a user is logged in, the server generates a random token and

stores it in a database.

The server sends the token to the client in a query parameter.

The client stores the token and sends it back to the server with each

request.

The server checks if the token is valid and retrieves the user from the

database.

The server can then send the profile page to the client.

1.

2.

3.

4.

5.

•

•

1.

2.

3.

4.

5.

37 HTTP

This would look like the following:

This is a very simple way to implement HTTP sessions. It is not very secure

as the token is sent in clear text in the URL. This means that anyone can see

the token and use it to access the profile page.

HTTP sessions using cookies

In a very similar way as the previous example, the server can use cookies to

keep track of the state of the client.

Cookies are small pieces of data sent by the server to the client and sent

back to the server with each request.

It is part of the HTTP protocol and is meant to store data on the client side.

A cookie is identified by a name and a value and is sent in the Set-Cookie

header.

The MDN Web Docs has a very good documentation on cookies: https://

developer.mozilla.org/en-US/docs/Web/HTTP/Cookies.

The server can use cookies to keep track of the state of the client:

Once a user is logged in, the server generates a random token and

stores it in a database.

The server sends the token to the client in a cookie.

The client stores the cookie and sends it back to the server with each

request.

This would look like the following:

Let's update the Main.java file to demonstrate this:

C -> S: POST /login

S -> C: 302 Found (redirect to /profile?token=1234567890)

C -> S: GET /profile?token=1234567890

S -> C: 200 OK (profile page)

1.

2.

3.

C -> S: POST /login

S -> C: 302 Found (redirect to /profile and set a cookie with the token)

C -> S: GET /profile (the cookie is sent by the client)

S -> C: 200 OK (profile page)

38 HTTP

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

In this example, we have added a new context with the path /cookie-demo.

This context will respond to GET requests.

The context will get the cookie cookie from the request. If the cookie is

missing, the server will set a new cookie and respond with a 200 (OK) status

code and a message.

If the cookie is present, the server will respond with a 200 (OK) status code

and a message with the value of the cookie.

Run the application and open your browser at http://localhost:8080/

cookie-demo.

The first time you access the page, you should see the following:

The server has set a cookie with the name cookie and the value cookie-demo.

Now, refresh the page. You should see the following:

The browser has sent the cookie with the name cookie and the value to the

server.

You can access the cookies in your browser using the developer tools:

Firefox: https://developer.mozilla.org/en-US/docs/Tools/

Storage_Inspector

Chromium-based browsers (Chrome, Edge, etc.): https://

developer.chrome.com/docs/devtools/application/cookies

app.get("/cookie-demo", ctx -> {

String cookie = ctx.cookie("cookie");

if (cookie == null) {

 ctx.cookie("cookie", "cookie-demo");

 ctx.result("You just called `/cookie-demo` without a cookie. A cookie is now set!");

} else {

 ctx.result("You just called `/cookie-demo` with a cookie. Its value is '" + cookie + "'!");

}

});

You just called `/cookie-demo` without a cookie. A cookie is now set!

You just called `/cookie-demo` with a cookie. Its value is 'cookie-demo'!

•

•

39 HTTP

http://localhost:8080/cookie-demo
http://localhost:8080/cookie-demo
https://developer.mozilla.org/en-US/docs/Tools/Storage_Inspector
https://developer.mozilla.org/en-US/docs/Tools/Storage_Inspector
https://developer.chrome.com/docs/devtools/application/cookies
https://developer.chrome.com/docs/devtools/application/cookies

Safari: https://developer.apple.com/safari/tools/

Try to update the value of the cookie and refresh the page. You should see

the new value of the cookie.

If you update the value of the cookie to something else than cookie-demo,

the server will display its new value. Just be aware that some characters are

not allowed in cookies. See the MDN Web Docs documentation on cookies

for more information: https://developer.mozilla.org/en-US/docs/Web/

HTTP/Headers/Set-Cookie#cookie-namecookie-value.

Cookies are very useful to keep track of the state of the client. They are

automatically sent by the browser with each request. There is no need to do

anything.

•

40 HTTP

https://developer.apple.com/safari/tools/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie-namecookie-value
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie-namecookie-value

API design

Now that you have a better understand of the basics of HTTP, you will learn

how to design and develop APIs.

Developing a web application is not easy. You need to think about the

architecture of the application, the database, the security, etc.

In order to make it easier to develop web applications, developers have

developed some patterns to follow.

An Application Protocol Interface (API) is a set of functions and procedures

that allow the creation of applications that access the features or data of an

operating system, application or other service.

An API is a contract between the client and the server. It defines how the

client and the server should interact with each other.

Using an API, the client can send requests to the server and get responses

from the server. This allow to use many different clients (web browsers,

mobile applications, desktop applications, etc.) with the same server.

Most APIs are based on the HTTP protocol. This means that they use the

HTTP methods (GET, POST, PUT, PATCH, DELETE, etc.) to define the operations

that can be performed on the resources.

The common format to send data to the server and get data from the server

is JSON. JSON is a lightweight data interchange format. It is easy for humans

to read and write. It is easy for machines to parse and generate.

JSON is the standard format used by most APIs. It is not mandatory to use

JSON but it is recommended.

Javalin allows the serialization and deserialization of JSON. This means that

you can transform a Java Object to JSON and vice versa.

41 API design

https://www.json.org/json-en.html

Simple APIs with CRUD operations

Designing an API is not a trivial task. Most of the time, APIs are designed

around the CRUD pattern.

CRUD stands for Create, Read, Update and Delete. It is a pattern that is used

to design APIs.

The CRUD pattern is based on the four basic operations of persistent

storage:

Create - Create a new resource

Read - Read a resource

Update - Update a resource

Delete - Delete a resource

The CRUD pattern is very simple and easy to understand. It is very useful to

design APIs.

REST APIs

REST stands for Representational State Transfer. It is a pattern that is used

to design APIs but has to follow strict rules and are more complex to design

than simple CRUD APIs.

The REST pattern is based on the six following principles:

Client / server architecture: client and server are completely separated

and only interact through the API

Stateless: the server does not retain any session information. Requests

from the client must include all the information necessary to process it.

Cache-ability: a REST API should support caching of responses by the

client and control which responses can be cached and which not.

Layered system: it should be able to add intermediate systems (cache,

load balancer, security gateway) without any impact for the client

Uniform interface:

Use URIs/URLs to identify resources

Server responses use a standard format that includes all

information required by the client to process the data (modify or

delete the resource’s state)

Server responses include links that allow the client to discover how

to interact with a resource

•

•

•

•

1.

2.

3.

4.

5.

42 API design

https://en.wikipedia.org/wiki/REST

Code on demand (optional): responses may include executable code to

customize functionality of the client

All REST APIs are APIs but not all APIs are REST APIs.

REST APIs are hard to implement correctly. In this course, we will stay with

CRUD APIs. We mention REST APIs for completeness.

Simple API with CRUD operations example

Let's design a simple CRUD API for a user resource.

We will architecture the application using the Domain Driven Design (DDD)

approach with two domains:

The users domain that contains the user resource

The auth domain that contains the authentication logic

The user resource has the following properties:

id - The unique identifier of the user

firstName - The first name of the user

lastName - The last name of the user

email - The email address of the user

password - The password of the user

The user resource has the following operations:

Create a new user

Get many users that you can filter by first name and/or last name

Get one user by its ID

Update a user

Delete a user

The user resource has the following endpoints:

POST /users (or PUT /users) - Create a new user

GET /users - List all users

GET /users?firstName={firstName}&lastName={lastName} - Search users by first

name and/or last name

GET /users/{id} - Read a user

PUT /users/{id} (or PATCH /users/{id}) - Update a user

DELETE /users/{id} - Delete a user

6.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

43 API design

https://en.wikipedia.org/wiki/Domain-driven_design

In order to demonstrate the previous example of a stateful/stateless

application, the auth domain will contain the following operations:

Login a user

Logout a user

Get the current user (the user that is logged in)

The auth domain has the following endpoints:

POST /login - Login a user

POST /logout - Logout a user

GET /profile - Get the current user

Let's implement this API using Javalin.

Start by creating a new directory src/main/java/ch/heigvd/users and a new file

User.java:

This class represents a user. It has the following properties:

id - The unique identifier of the user

firstName - The first name of the user

lastName - The last name of the user

email - The email address of the user

password - The password of the user

•

•

•

•

•

•

package ch.heigvd.users;

public class User {

public Integer id;

public String firstName;

public String lastName;

public String email;

public String password;

public User() {

// Empty constructor for serialisation/deserialization

}

}

•

•

•

•

•

44 API design

It has one constructor to allow the serialization and deserialization of the

user. In a production application, you would certainly make all fields private

and use getters and setters. For the sake of simplicity, we will use public

fields.

Now, let's create a new class UsersController.java in the same directory:

package ch.heigvd.users;

import io.javalin.http.*;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.ConcurrentHashMap;

import java.util.concurrent.atomic.AtomicInteger;

public class UsersController {

private final ConcurrentHashMap<Integer, User> users;

private final AtomicInteger userId = new AtomicInteger();

public UsersController(ConcurrentHashMap<Integer, User> users) {

this.users = users;

}

public void create(Context ctx) {

 User newUser = ctx.bodyValidator(User.class)

.check(obj -> obj.firstName != null, "Missing first name")

.check(obj -> obj.lastName != null, "Missing last name")

.check(obj -> obj.email != null, "Missing email")

.check(obj -> obj.password != null, "Missing password")

.get();

for (User user : users.values()) {

if (user.email.equals(newUser.email)) {

throw new ConflictResponse();

}

}

 User user = new User();

45 API design

 user.id = userId.getAndIncrement();

 user.firstName = newUser.firstName;

 user.lastName = newUser.lastName;

 user.email = newUser.email;

 user.password = newUser.password;

 users.put(user.id, user);

 ctx.status(HttpStatus.CREATED);

 ctx.json(user);

}

public void getOne(Context ctx) {

Integer id = ctx.pathParamAsClass("id", Integer.class)

.check(userId -> users.get(userId) != null, "User not found")

.getOrThrow(message -> new NotFoundResponse());

 User user = users.get(id);

 ctx.json(user);

}

public void getMany(Context ctx) {

String firstName = ctx.queryParam("firstName");

String lastName = ctx.queryParam("lastName");

List<User> users = new ArrayList<>();

for (User user : this.users.values()) {

if (firstName != null && !user.firstName.equals(firstName)) {

continue;

}

if (lastName != null && !user.lastName.equals(lastName)) {

continue;

}

 users.add(user);

}

46 API design

This class represents the controller of the users resource. It has a

ConcurrentHashMap to store the users.

 ctx.json(users);

}

public void update(Context ctx) {

Integer id = ctx.pathParamAsClass("id", Integer.class)

.check(userId -> users.get(userId) != null, "User not found")

.getOrThrow(message -> new NotFoundResponse());

 User updateUser = ctx.bodyValidator(User.class)

.check(obj -> obj.firstName != null, "Missing first name")

.check(obj -> obj.lastName != null, "Missing last name")

.check(obj -> obj.email != null, "Missing email")

.check(obj -> obj.password != null, "Missing password")

.get();

 User user = users.get(id);

 user.firstName = updateUser.firstName;

 user.lastName = updateUser.lastName;

 user.email = updateUser.email;

 user.password = updateUser.password;

 users.put(id, user);

 ctx.json(user);

}

public void delete(Context ctx) {

Integer id = ctx.pathParamAsClass("id", Integer.class)

.check(userId -> users.get(userId) != null, "User not found")

.getOrThrow(message -> new NotFoundResponse());

 users.remove(id);

 ctx.status(HttpStatus.NO_CONTENT);

}

}

47 API design

It has the following methods:

create - Create a new user

getOne - Get one user by its ID

getMany - Get many users that you can filter by first name and/or last

name

update - Update a user

delete - Delete a user

Using a bit more advanced features of Javalin, we can validate the request

body and the path parameters to ensure that the request is valid with the

help of the bodyValidator and pathParamAsClass methods.

These methods will check if the request body and the path parameters are

valid and automatically deserialize the request body and the path

parameters to the specified class.

If not, we can throw an exception that will be handled by Javalin and will

respond with the appropriate status code.

The createUser method will respond with a 201 (Created) status code if

successful. However, the method will respond with a 409 (Conflict) status

code if the user already exists by their email address.

Now let's implement the auth domain. Start by creating a new directory src/

main/java/ch/heigvd/auth and a new file AuthController.java:

•

•

•

•

•

package ch.heigvd.auth;

import ch.heigvd.users.User;

import io.javalin.http.*;

import java.util.concurrent.ConcurrentHashMap;

public class AuthController {

private final ConcurrentHashMap<Integer, User> users;

public AuthController(ConcurrentHashMap<Integer, User> users) {

this.users = users;

}

48 API design

public void login(Context ctx) {

 User loginUser = ctx.bodyValidator(User.class)

.check(obj -> obj.email != null, "Missing email")

.check(obj -> obj.password != null, "Missing password")

.get();

for (User user : users.values()) {
if (user.email.equals(loginUser.email) &&

user.password.equals(loginUser.password)) {

 ctx.cookie("user", user.id.toString());

 ctx.status(HttpStatus.NO_CONTENT);

return;

}

}

throw new UnauthorizedResponse();

}

public void logout(Context ctx) {

 ctx.removeCookie("user");

 ctx.status(HttpStatus.NO_CONTENT);

}

public void profile(Context ctx) {

String userId = ctx.cookie("user");

if (userId == null) {

throw new UnauthorizedResponse();

}

 User user = users.get(Integer.parseInt(userId));

if (user == null) {

throw new UnauthorizedResponse();

}

 ctx.json(user);

}

}

49 API design

This class represents the controller of the auth domain. It has a

ConcurrentHashMap to store the users.

It has the following methods:

login - Login a user

logout - Logout a user

profile - Get the current user (the user that is logged in)

The profile method will respond with a 401 (Unauthorized) status code if the

user is not logged in. If logged in, the method will respond with a 200 (OK)

status code and the user.

The final step is to update the Main.java file to define the endpoints/routes

that will be used by the API using the same controllers we have just created:

•

•

•

package ch.heigvd;

import ch.heigvd.auth.AuthController;

import ch.heigvd.users.User;

import ch.heigvd.users.UsersController;

import io.javalin.Javalin;

import java.util.concurrent.ConcurrentHashMap;

public class Main {

public final static int PORT = 8080;

public static void main(String[] args) {

 Javalin app = Javalin.create();

// This will serve as our database

ConcurrentHashMap<Integer, User> users = new ConcurrentHashMap<>();

// Controllers

 AuthController authController = new AuthController(users);

 UsersController usersController = new UsersController(users);

// Auth routes

 app.post("/login", authController::login);

 app.post("/logout", authController::logout);

50 API design

Run the application and open your browser at http://localhost:8080/users.

It should return an empty array.

Let's try to create a new user using curl:

The output should be similar to the following:

The user has been successfully created with ID 0 and a status code 201. Let's

try to create the same user again:

The output should be similar to the following:

 app.get("/profile", authController::profile);

// Users routes

 app.post("/users", usersController::create);

 app.get("/users", usersController::getMany);

 app.get("/users/{id}", usersController::getOne);

 app.put("/users/{id}", usersController::update);

 app.delete("/users/{id}", usersController::delete);

 app.start(PORT);

}

}

curl -i -X POST -H "Content-Type: application/json" -d
'{"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}'
http://host.docker.internal:8080/users

HTTP/1.1 201 Created

Date: Fri, 08 Dec 2023 10:48:15 GMT

Content-Type: application/json

Content-Length: 96

{"id":

0,"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}

curl -i -X POST -H "Content-Type: application/json" -d
'{"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}'
http://host.docker.internal:8080/users

HTTP/1.1 409 Conflict

Date: Fri, 08 Dec 2023 10:46:58 GMT

Content-Type: text/plain

Content-Length: 8

51 API design

http://localhost:8080/users

As the user already exists, the server responds with a 409 (Conflict) status

code.

Let's create a user with a missing field:

The output should be similar to the following:

As the password is missing, the server responds with a 400 (Bad Request)

status code. The response body contains the error message and the request

body that was sent by the client.

Refresh the page at http://localhost:8080/users. You should see the user

you have just created in an array. You can do the same with curl:

The output should be similar to the following:

Conflict

curl -i -X POST -H "Content-Type: application/json" -d
'{"firstName":"Johanna","lastName":"Dane","email":"johanna.dane@example.com"}'
http://host.docker.internal:8080/users

HTTP/1.1 400 Bad Request

Date: Mon, 11 Dec 2023 17:04:05 GMT

Content-Type: application/json

Content-Length: 170

{"REQUEST_BODY":[{"message":"Missing password","args":{},"value":

{"id":null,"firstName":"Johanna","lastName":"Dane","email":"johanna.dane@example.com","password":null}}]}

curl -i http://host.docker.internal:8080/users

HTTP/1.1 200 OK

Date: Fri, 08 Dec 2023 10:48:58 GMT

Content-Type: application/json

Content-Length: 194

[{"id":

0,"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"},

{"id":

1,"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}]

52 API design

http://localhost:8080/users

Let's get the user we have just created (the same can be done in the

browser):

Let's try to update the user using curl:

The output should be similar to the following:

The user has been successfully updated with ID 0 and a status code 200.

Let's try to login the user using curl:

The output should be similar to the following:

You can notice the Set-Cookie header in the response headers. This means

that the server has set a cookie with the name user and the value 0.

Let's use the cookie to get the current user:

curl -i http://host.docker.internal:8080/users/0

curl -i -X PUT -H "Content-Type: application/json" -d
'{"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"}'
http://host.docker.internal:8080/users/0

HTTP/1.1 200 OK

Date: Fri, 08 Dec 2023 12:19:13 GMT

Content-Type: application/json

Content-Length: 95

{"id":

0,"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"}

curl -i -X POST -H "Content-Type: application/json" -d
'{"email":"jane.doe@example.com","password":"secret"}' http://
host.docker.internal:8080/login

HTTP/1.1 200 OK

Date: Fri, 08 Dec 2023 12:21:06 GMT

Content-Type: text/plain

Set-Cookie: user=0; Path=/

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Length: 0

curl -i --cookie user=0 http://host.docker.internal:8080/profile

53 API design

The --cookie option allows to send a cookie with the request. A browser does

this automatically.

The output should be similar to the following:

Let's try to get the current user without the cookie:

The output should be similar to the following:

As the cookie is missing, the server responds with a 401 (Unauthorized)

status code.

Let's try to logout the user using curl:

The output should be similar to the following:

You can notice the server 204 (No Content) status code and the Set-Cookie

header.

HTTP/1.1 200 OK

Date: Fri, 08 Dec 2023 12:23:21 GMT

Content-Type: application/json

Content-Length: 95

{"id":

0,"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"}

curl -i http://host.docker.internal:8080/profile

HTTP/1.1 401 Unauthorized

Date: Fri, 08 Dec 2023 12:23:49 GMT

Content-Type: text/plain

Content-Length: 12

Unauthorized

curl -i -X POST http://host.docker.internal:8080/logout

HTTP/1.1 204 No Content

Date: Fri, 08 Dec 2023 12:24:42 GMT

Content-Type: text/plain

Set-Cookie: user=; Path=/; Expires=Thu, 01-Jan-1970 00:00:00 GMT; Max-Age=0

Expires: Thu, 01 Jan 1970 00:00:00 GMT

54 API design

The header has an empty value for the cookie user. This means that the

server asks the client to remove the cookie with the name user.

Other information about the cookie is also present in the Set-Cookie header

to ensure the cookie is invalidated.

Let's try to delete the user using curl:

The output should be similar to the following:

The user has been successfully deleted with ID 0 and a status code 204 (No

Content).

How to document an API

As seen in the Define an application protocol chapter, it is important to

document a protocol to allow other developers to understand how to use it.

Documenting an API is thus very important as well: as an API exposes the

features of an application to the outside world, it is important to document

it properly for other developers to understand how to use it.

There are many ways to document an API. The most common way is one of

the following:

Using the OpenAPI Specification

Describe the API using a simple text file

OpenAPI is a very useful and powerful specification to document an API. It

is, however, a bit complex to use in the context of this course with the time

allowed (you can check the Go further section if you want to implement if

yourself).

Let's use a simple text file to document the API we have just created.

As HTTP is way more structured than other protocols, it is easy to document

an API using a simple text file.

curl -i -X DELETE http://host.docker.internal:8080/users/0

HTTP/1.1 204 No Content

Date: Fri, 08 Dec 2023 12:27:43 GMT

Content-Type: text/plain

•

•

55 API design

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/11-define-an-application-protocol
https://www.openapis.org/

Let's create a new file API.md at the root of the project:

Users API

The users API allows to manage users. It uses the HTTP protocol and the JSON

format.

The API is based on the CRUD pattern. It has the following operations:

- Create a new user

- Get many users that you can filter by first name and/or last name

- Get one user by its ID

- Update a user

- Delete a user

Users are also able to login and logout. They can also access their profile to

validate their information using a cookie.

Endpoints

Create a new user

- `POST /users`

Create a new user.

Request

The request body must contain a JSON object with the following properties:

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

Response

The response body contains a JSON object with the following properties:

- `id` - The unique identifier of the user

56 API design

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

Status codes

- `201` (Created) - The user has been successfully created

- `400` (Bad Request) - The request body is invalid

- `409` (Conflict) - The user already exists

Get many users

- `GET /users`

Get many users.

Request

The request can contain the following query parameters:

- `firstName` - The first name of the user

- `lastName` - The last name of the user

Response

The response body contains a JSON array with the following properties:

- `id` - The unique identifier of the user

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

Status codes

- `200` (OK) - The users have been successfully retrieved

Get one user

57 API design

- `GET /users/{id}`

Get one user by its ID.

Request

The request path must contain the ID of the user.

Response

The response body contains a JSON object with the following properties:

- `id` - The unique identifier of the user

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

Status codes

- `200` (OK) - The user has been successfully retrieved

- `404` (Not Found) - The user does not exist

Update a user

- `PUT /users/{id}`

Update a user by its ID.

Request

The request path must contain the ID of the user.

The request body must contain a JSON object with the following properties:

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

58 API design

Response

The response body contains a JSON object with the following properties:

- `id` - The unique identifier of the user

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

Status codes

- `200` (OK) - The user has been successfully updated

- `400` (Bad Request) - The request body is invalid

- `404` (Not Found) - The user does not exist

Delete a user

- `DELETE /users/{id}`

Delete a user by its ID.

Request

The request path must contain the ID of the user.

Response

The response body is empty.

Status codes

- `204` (No Content) - The user has been successfully deleted

- `404` (Not Found) - The user does not exist

Login

- `POST /login`

Login a user.

59 API design

Request

The request body must contain a JSON object with the following properties:

- `email` - The email address of the user

- `password` - The password of the user

Response

The response body is empty. A `user` cookie is set with the ID of the user.

Status codes

- `204` (No Content) - The user has been successfully logged in

- `400` (Bad Request) - The request body is invalid

- `401` (Unauthorized) - The user does not exist or the password is incorrect

Logout

- `POST /logout`

Logout a user.

Request

The request body is empty.

Response

The response body is empty. The `user` cookie is removed.

Status codes

- `204` (No Content) - The user has been successfully logged out

Profile

- `GET /profile`

60 API design

How to persist data

In the previous example, we have used a ConcurrentHashMap to store the

users.

In a production application, you would certainly use a database to store the

users (PostgreSQL, MySQL, MongoDB, etc.).

While it would be possible to use a database with Javalin, it is out of the

scope of this course. You can check the Go further section if you want to

implement if yourself.

As already mentioned, Javalin is perfect to create prototypes and proof of

concepts but we would recommend you to use a web framework such as

Quarkus or Spring Boot to create a production application.

How to secure an API

You might have noticed that the API we have just created is not very secure:

we do not want to allow anyone to create, read, update or delete users.

Get the current user (the user that is logged in).

Request

The request body is empty.

Response

The response body contains a JSON object with the following properties:

- `id` - The unique identifier of the user

- `firstName` - The first name of the user

- `lastName` - The last name of the user

- `email` - The email address of the user

- `password` - The password of the user

Status codes

- `200` (OK) - The user has been successfully retrieved

- `401` (Unauthorized) - The user is not logged in

61 API design

Some APIs are public and do not require any authentication. However, most

APIs are private and require authentication.

Securing an API is not an easy task and is out of the scope of this course

(you can check the Go further section if you want to implement if yourself).

You will learn how to secure a web application in future courses.

In the context of this course, it is not important that the API is secure. It is

more important to understand the basics of how to design, how to develop

and how to document an API.

62 API design

Share your project

Create a new Git repository and push your code to it. Do not forget all the

files you have created or modified during this chapter and the best

practices you have learned.

Share your project in the GitHub Discussions of this organization: https://

github.com/orgs/heig-vd-dai-course/discussions.

Create a new discussion with the following information:

Title: DAI 2023-2024 - Users API - First name Last Name

Category: Show and tell

Description: The link to your GitHub repository.

This will notify us that you have completed the exercise and we can check

your work.

You can compare your solution with the official one stated in the Solution

section, however, we highly recommend you to try to complete the practical

content by yourself first to learn the most.

•

•

•

63 Share your project

https://github.com/orgs/heig-vd-dai-course/discussions
https://github.com/orgs/heig-vd-dai-course/discussions

Go further

This is an optional section. Feel free to skip it if you do not have time.

Are you able to document the API you have just created using the

OpenAPI Specification? You can use the official documentation to help

you: https://javalin.io/tutorials/openapi-example.

Are you able to secure the API you have just created? You can use the

official documentation to help you: https://javalin.io/tutorials/auth-

example.

Are you able to persist the data in a database? You can use the official

documentation to help you: https://javalin.io/tutorials/jetty-session-

handling.

•

•

•

64 Go further

https://javalin.io/tutorials/openapi-example
https://javalin.io/tutorials/auth-example
https://javalin.io/tutorials/auth-example
https://javalin.io/tutorials/jetty-session-handling
https://javalin.io/tutorials/jetty-session-handling

Conclusion

What did you do and learn?

In this chapter, you have learned about the extended features of HTTP.

You have learned how endpoints/routes are defined with their methods and

status codes.

You have learned how to send and get data to/from the server and about

content negotiation.

Using cookies, you have learned how to keep track of the state of the client.

And finally, you have learned how to design and develop APIs with the HTTP

protocol.

Test your knowledge

At this point, you should be able to answer the following questions:

What are HTTP methods?

What are HTTP status codes? How are they classified?

What is content negotiation?

What are cookies? How are they used?

What is an API? How to design and develop an API?

•

•

•

•

•

65 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

66 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/121

What will you do next?

In the next chapter, you will learn the following topics:

Web infrastructures

How to run and maintain web applications on the Internet?

How to scale web applications?

•

67 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

Evolution of HTTP

Missing item in the list? Feel free to open a pull request to add it!

•

68 Additional resources

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

Solution

You can find the solution to the practical content in the heig-vd-dai-course/

heig-vd-dai-course-solutions repository.

If you have any questions about the solution, feel free to open an issue to

discuss it!

69 Solution

https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions
https://github.com/heig-vd-dai-course/heig-vd-dai-course-solutions

Sources

Main illustration by Ashley Knedler on Unsplash•

70 Sources

https://unsplash.com/@ashkned
https://unsplash.com/photos/KvD36NRFjl4

	HTTP and curl - Course material
	Table of contents
	Objectives
	Disclaimer
	Prepare and setup your environment
	curl
	Start and configure curl
	Alternatives
	Resources

	Javalin
	Create and configure a new IntelliJ IDEA project
	Add Javalin to the project
	Update the Main.java file
	Explore and understand the code
	Alternatives
	Resources

	HTTP
	HTTP versions
	HTTP/0.9
	HTTP/1.0
	HTTP/1.1
	HTTP/2
	HTTP/3

	HTTP resources
	URL encoding
	HTTP request methods
	HTTP request and response format
	Structure of a HTTP request
	Structure of a HTTP response

	HTTP response status codes
	HTTP path parameters, query parameters and body
	HTTP path parameters
	HTTP query parameters
	HTTP body

	HTTP headers
	HTTP content negotiation
	HTTP sessions (stateless vs. stateful)
	HTTP sessions using a query parameter
	HTTP sessions using cookies

	API design
	Simple APIs with CRUD operations
	REST APIs
	Simple API with CRUD operations example
	How to document an API
	How to persist data
	How to secure an API

	Share your project
	Go further
	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Solution
	Sources

