
Caching and
performance - Course
material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/23-caching-and-performance/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/23-caching-and-performance/23-caching-and-performance-practical-work.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md

Table of contents

Table of contents

Objectives

Caching

Types of caching

CDN

Where to cache?

Managing cache with HTTP

Expiration model

Validation model

Is it possible to use both models?

Managing cache with proxies

Managing cache with key-value stores

Practical content

Update the Main.java class to cache the results

Update the AuthController.java to cache the results

Update the UsersController.java to cache the results

Test the caching system with curl

Test the caching system with a browser

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Sources

•

•

•

•

•

•

•

•

•

•

•

•

2 Table of contents

Objectives

In this last and final chapter of this course, you will learn about caching and

performance.

You will learn about caching, how it can be used to improve the

performance of a system, where to cache, how you can manage cache with

HTTP and how to implement it in your application.

3 Objectives

Caching

Caching is the process of storing data in a cache. A cache is a temporary

storage where data is stored so that future requests for that data can be

served faster.

Caching can be used to improve the performance of a system by serving

cached data instead of processing a request again. Caching significantly

improves the performance of a system because it avoids processing the

same request multiple times.

This has several advantages:

The client will receive the response faster, especially when the client

itself (browser) has cached the response.

The server does not have to process the request (query the database,

process the data, compose the response, etc).

The network does not have to carry the messages along the entire path

between client and server.

It however introduces some complexity because it is difficult to know when

to invalidate a cache. If a cache is not invalidated, it can serve stale data (=

outdated data).

Types of caching

Caching can be done on the client-side or on the server-side:

Client-side caching (private caches): once a client has received a

response from a server, it can store the response in a cache. The next

time the client needs the same resource, it can use the cached

response instead of sending a new request to the server.

Server-side caching (shared caches): the server stores data in a cache

with the help of a reverse proxy or by the web application. The next

time the server needs the same resource, it can use the cached

response instead of processing the request again.

•

•

•

•

•

4 Caching

CDN

Content delivery networks (CDNs) are a type of cache that can be used to

serve static content (e.g. images, videos, etc.) to clients.

A CDN is a geographically distributed network of proxy servers and their

data centers.

A CDN can be used to improve the performance of a system by serving

static content to clients from the closest server for clients all around the

world.

Where to cache?

Caching can be done on the client-side, on the server-side, or on a CDN.

Private caches are caches that are only used by one client. Public caches

are caches that are used by multiple clients.

The best would be to cache at each level of the system to ensure the best

performance. But it is not always possible or faisable.

In the context of this course, we will focus on server-side caching.

5 Caching

Managing cache with HTTP

Managing cache is challenging because it is difficult to know when to

invalidate a cache. If a cache is not invalidated, it can serve stale data.

There are two main caching models:

Expiration model: the cache is valid for a certain amount of time.

Validation model: the cache is valid until the data is modified.

Expiration and validation are two mechanisms that can be used to control

caching.

Expiration is the process of specifying how long a response can be cached.

Validation is the process of checking if a cached response is still valid.

Both can be used at the same time to improve the performance of the

system.

Much more details about caching with HTTP can be found on MDN Web

Docs: https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching.

Tip

MDN Web Docs is a great resource to learn about web technologies. It is

maintained by the Mozilla Foundation and is considered a reliable source of

information.

If you ever have a question about a web technology, you can check MDN

Web Docs to find the answer.

Expiration model

The expiration model is the simplest caching model. It is described in RFC

2616.

The cache is invalidated after a certain amount of time. The cache can be

invalidated after a certain amount of time because the data is not expected

to change.

•

•

6 Managing cache with HTTP

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://datatracker.ietf.org/doc/html/rfc2616#section-13.2
https://datatracker.ietf.org/doc/html/rfc2616#section-13.2

The expiration model can be used to cache static content (e.g. images,

videos, etc.) or to cache responses from servers to improve the performance

of the system.

The expiration model can be implemented with the following header:

Cache-Control: max-age=<number of seconds>: specifies the maximum amount

of seconds a resource will be considered fresh. and responses.

•

7 Managing cache with HTTP

8 Managing cache with HTTP

Validation model

The validation model is more complex than the expiration model. It is

described in RFC 2616.

The cache is invalidated when the data is modified. The cache can be

invalidated when the data is modified because the data is expected to

change.

The validation model can be used to cache responses from servers to

improve the performance of the system.

The main idea of the validation model is:

Send a request to the server to check if the data has changed.

If the data has not changed, the server can return a 304 Not Modified

response to the client.

If the data has changed, the server can return a 200 OK response to the

client with the new data.

The request to check if the data has changed is called a conditional

request.

When clients want to update a resource, they can send a conditional

request to the server to check if the data has changed since the last time it

was modified.

If the data has not changed since the last modification. The server accepts

the changes, update the resource and returns a 200 OK response.

If the data has changed, it means someone else has updated the data prior

to our changes. The server cannot accept the changes and returns a 412

Precondition Failed response to the client.

Tip

Some common terms used in the context of caching are cache hit and

cache miss.

A cache hit occurs when the cache contains the requested data and can

return it without accessing the origin server.

A cache miss occurs when the cache does not contain the requested data

and must access the origin server to get it.

1.

2.

3.

9 Managing cache with HTTP

https://datatracker.ietf.org/doc/html/rfc2616#section-13.3

You will see these terms used in the context of caching in the following

diagrams and explanations.

There are two types of conditional requests:

Based on the Last-Modified header: allows a 304 Not Modified to be

returned if content is unchanged since the last time it was modified (= a

cache hit)

Based on the ETag header: allows a 304 Not Modified to be returned if

content is unchanged for the version/hash of the given entity (= a cache

hit)

Based on the Last-Modified header

With HTTP, the validation model based on the Last-Modified header can be

implemented with the following headers:

Last-Modified: indicates the date and time at which the resource was last

updated.

If-Modified-Since: returns a 304 Not Modified if content is unchanged since

the last known time (= a cache hit).

If-Unmodified-Since: returns a 412 Precondition Failed if content has changed

since the last known time (= a cache miss) when you try to update/

delete the resource.

The Last-Modified header is used to check if the data has changed since the

last time it was modified.

•

•

•

•

•

10 Managing cache with HTTP

11 Managing cache with HTTP

Based on the ETag header

With HTTP, the validation model based on the ETag header can be

implemented with the following headers:

ETag: provides the current entity tag for the selected representation.

Think of it like a version number or a hash for the given resource.

If-None-Match: returns a 304 Not Modified if content is unchanged for the

entity specified (ETag) (= a cache hit).

If-Match: returns a 412 Precondition Failed if content is changed for the

entity specified (ETag) (= a cache miss) when you try to update/delete

the resource.

The ETag header is used to check if the data has changed since the last time

it was modified.

•

•

•

12 Managing cache with HTTP

13 Managing cache with HTTP

Is it possible to use both models?

Yes, it is possible to use the expiration model and the validation model at

the same time.

It can improve the performance even more because a client will not even

attempt to send a request to the server if the expiration time is not

reached. But once the expiration time is reached, the client will send a

validation request to the server to check if the data has changed.

14 Managing cache with HTTP

Managing cache with proxies

A forward/reverse proxy can be used to manage cache with HTTP as well. A

forward/reverse proxy can cache responses from clients/servers to improve

the performance of the system.

Traefik, for example, can be used to cache responses from servers. It is

available as a middleware in their Enterprise version. You can learn more

about it in their documentation at https://doc.traefik.io/traefik-enterprise/

middlewares/http-cache/.

As it is out of the scope/reach for this course, we will not go into details

about how to configure Traefik to cache responses from servers. We will,

however, implement it on the server side with Javalin.

15 Managing cache with proxies

https://doc.traefik.io/traefik-enterprise/middlewares/http-cache/
https://doc.traefik.io/traefik-enterprise/middlewares/http-cache/

Managing cache with key-value

stores

A key-value store is a type of database that stores data as a collection of

key value pairs.

A key-value store can be used to manage cache with HTTP. A key-value store

can cache responses from clients/servers to improve the performance of

the system.

Redis, for example, can be used as a key-value store to cache responses

from servers. You can learn more about it in their documentation at https://

redis.io/documentation.

As it is out of the scope/reach for this course, we will not go into details

about how to configure Redis to cache responses from servers. We will,

however, implement it on the server side with Javalin.

16 Managing cache with key-value stores

https://redis.io/documentation
https://redis.io/documentation

Practical content

In this practical content, you will implement the validation model based on

the Last-Modified header in your application.

You will need the results of the practical content from chapter HTTP and

curl.

If you do not have the results of the practical content from chapter HTTP

and curl, you can use the solution mentioned in the HTTP and curl chapter.

Clone the solution to have the project ready for this practical content.

Update the Main.java class to cache the results

Update your Main.java class to add a Map to cache results to your application:

diff --git a/23-caching-and-performance/src/main/java/ch/heigvd/dai/Main.java b/23-
caching-and-performance/src/main/java/ch/heigvd/dai/Main.java

index d4aae20..cc64e48 100644

--- a/23-caching-and-performance/src/main/java/ch/heigvd/dai/Main.java

+++ b/23-caching-and-performance/src/main/java/ch/heigvd/dai/Main.java

@@ -1,36 +1,49 @@

 package ch.heigvd.dai;

 import ch.heigvd.dai.auth.AuthController;

 import ch.heigvd.dai.users.User;

 import ch.heigvd.dai.users.UsersController;

 import io.javalin.Javalin;

+import java.time.LocalDateTime;

 import java.util.concurrent.ConcurrentHashMap;

 public class Main {

 public static final int PORT = 8080;

 public static void main(String[] args) {

- Javalin app = Javalin.create();

+ Javalin app =

17 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/23-caching-and-performance
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/23-caching-and-performance

In this code snippet, we have added a Map to cache results to your

application.

+ Javalin.create(

+ // Add custom configuration to Javalin

+ config -> {

+ // This will allow us to parse LocalDateTime

+ config.validation.register(LocalDateTime.class, LocalDateTime::parse);

+ });

 // This will serve as our database

 ConcurrentHashMap<Integer, User> users = new ConcurrentHashMap<>();

+ // This will serve as our cache

+ //

+ // The key is to identify the user(s)

+ // The value is the last modification time of the user(s)
+ ConcurrentHashMap<Integer, LocalDateTime> usersCache = new

ConcurrentHashMap<>();

+

 // Controllers

- AuthController authController = new AuthController(users);

- UsersController usersController = new UsersController(users);

+ AuthController authController = new AuthController(users, usersCache);

+ UsersController usersController = new UsersController(users, usersCache);

 // Auth routes

 app.post("/login", authController::login);

 app.post("/logout", authController::logout);

 app.get("/profile", authController::profile);

 // Users routes

 app.post("/users", usersController::create);

 app.get("/users", usersController::getMany);

 app.get("/users/{id}", usersController::getOne);

 app.put("/users/{id}", usersController::update);

 app.delete("/users/{id}", usersController::delete);

 app.start(PORT);

 }

 }

18 Practical content

The key is to identify the user(s) and the value is the last modification time

of the user(s).

Javalin does not support LocalDateTime (the class representing a date) by

default. We have added a custom configuration to Javalin to parse

LocalDateTime.

Update the AuthController.java to cache the results

Update the AuthController.java to use the Map to cache results to your

application:

diff --git a/21-http-and-curl/src/main/java/ch/heigvd/dai/auth/AuthController.java b/
21-http-and-curl/src/main/java/ch/heigvd/dai/auth/AuthController.java

index 08c8670..83db13b 100644

--- a/21-http-and-curl/src/main/java/ch/heigvd/dai/auth/AuthController.java

+++ b/21-http-and-curl/src/main/java/ch/heigvd/dai/auth/AuthController.java

@@ -1,55 +1,81 @@

 package ch.heigvd.dai.auth;

 import ch.heigvd.dai.users.User;

 import io.javalin.http.*;

+import java.time.LocalDateTime;

 import java.util.concurrent.ConcurrentHashMap;

 public class AuthController {

 private final ConcurrentHashMap<Integer, User> users;

+ private final ConcurrentHashMap<Integer, LocalDateTime> usersCache;

+

- public AuthController(ConcurrentHashMap<Integer, User> users) {

+ public AuthController(

+ ConcurrentHashMap<Integer, User> users,

+ ConcurrentHashMap<Integer, LocalDateTime> usersCache) {

 this.users = users;

+ this.usersCache = usersCache;

 }

 public void login(Context ctx) {

 User loginUser =

 ctx.bodyValidator(User.class)

19 Practical content

 .check(obj -> obj.email != null, "Missing email")

 .check(obj -> obj.password != null, "Missing password")

 .get();

 for (User user : users.values()) {

 if (user.email.equalsIgnoreCase(loginUser.email)

 && user.password.equals(loginUser.password)) {

 ctx.cookie("user", String.valueOf(user.id));

 ctx.status(HttpStatus.NO_CONTENT);

 return;

 }

 }

 throw new UnauthorizedResponse();

 }

 public void logout(Context ctx) {

 ctx.removeCookie("user");

 ctx.status(HttpStatus.NO_CONTENT);

 }

 public void profile(Context ctx) {

 String userIdCookie = ctx.cookie("user");

 if (userIdCookie == null) {

 throw new UnauthorizedResponse();

 }

 Integer userId = Integer.parseInt(userIdCookie);

+ // Get the last known modification date of the user

+ LocalDateTime lastKnownModification =

+ ctx.headerAsClass("If-Modified-Since", LocalDateTime.class).getOrDefault(null);

+

+ // Check if the user has been modified since the last known modification date
+ if (lastKnownModification != null &&

usersCache.get(userId).equals(lastKnownModification)) {

+ throw new NotModifiedResponse();

+ }

+

20 Practical content

In this code snippets, we have updated the AuthController.java to:

Use the Map to cache the results of your application

Store results in the cache

Return the Last-Modified header

Validate the cache with the If-Modified-Since header

Validate the cache with the If-Unmodified-Since header

Update the UsersController.java to cache the results

Update the UsersController.java to use the Map to cache the results to your

application:

 User user = users.get(userId);

 if (user == null) {

 throw new UnauthorizedResponse();

 }

+ LocalDateTime now;

+ if (usersCache.containsKey(user.id)) {

+ // If it is already in the cache, get the last modification date

+ now = usersCache.get(user.id);

+ } else {

+ // Otherwise, set to the current date

+ now = LocalDateTime.now();

+ usersCache.put(user.id, now);

+ }

+

+ // Add the last modification date to the response

+ ctx.header("Last-Modified", String.valueOf(now));

 ctx.json(user);

 }

 }

1.

2.

3.

4.

5.

diff --git a/21-http-and-curl/src/main/java/ch/heigvd/dai/users/UsersController.java
b/21-http-and-curl/src/main/java/ch/heigvd/dai/users/
UsersController.java

index 76bca68..e66cc00 100644

--- a/21-http-and-curl/src/main/java/ch/heigvd/dai/users/UsersController.java

+++ b/21-http-and-curl/src/main/java/ch/heigvd/dai/users/UsersController.java

@@ -1,117 +1,221 @@

21 Practical content

 package ch.heigvd.dai.users;

 import io.javalin.http.*;

+import java.time.LocalDateTime;

 import java.util.ArrayList;

 import java.util.List;

 import java.util.concurrent.ConcurrentHashMap;

 import java.util.concurrent.atomic.AtomicInteger;

 public class UsersController {

 private final ConcurrentHashMap<Integer, User> users;

 private final AtomicInteger userId = new AtomicInteger(1);

+ private final ConcurrentHashMap<Integer, LocalDateTime> usersCache;

+

+ // This is a magic number used to store the users' list last modification date

+ // As the ID for users starts from 1, it is safe to reserve the value -1 for all users

+ private final Integer RESERVED_ID_TO_IDENTIFY_ALL_USERS = -1;

+

- public UsersController(ConcurrentHashMap<Integer, User> users) {

+ public UsersController(

+ ConcurrentHashMap<Integer, User> users,

+ ConcurrentHashMap<Integer, LocalDateTime> usersCache) {

 this.users = users;

+ this.usersCache = usersCache;

 }

 public void create(Context ctx) {

 User newUser =

 ctx.bodyValidator(User.class)

 .check(obj -> obj.firstName != null, "Missing first name")

 .check(obj -> obj.lastName != null, "Missing last name")

 .check(obj -> obj.email != null, "Missing email")

 .check(obj -> obj.password != null, "Missing password")

 .get();

 for (User user : users.values()) {

 if (user.email.equalsIgnoreCase(newUser.email)) {

 throw new ConflictResponse();

 }

22 Practical content

 }

 User user = new User();

 user.id = userId.getAndIncrement();

 user.firstName = newUser.firstName;

 user.lastName = newUser.lastName;

 user.email = newUser.email;

 user.password = newUser.password;

 users.put(user.id, user);

+ // Store the last modification date of the user

+ LocalDateTime now = LocalDateTime.now();

+ usersCache.put(user.id, now);

+

+ // Invalidate the cache for all users

+ usersCache.remove(RESERVED_ID_TO_IDENTIFY_ALL_USERS);

+

 ctx.status(HttpStatus.CREATED);

+

+ // Add the last modification date to the response

+ ctx.header("Last-Modified", String.valueOf(now));

+

 ctx.json(user);

 }

 public void getOne(Context ctx) {

 Integer id = ctx.pathParamAsClass("id", Integer.class).get();

+ // Get the last known modification date of the user

+ LocalDateTime lastKnownModification =

+ ctx.headerAsClass("If-Modified-Since", LocalDateTime.class).getOrDefault(null);

+

+ // Check if the user has been modified since the last known modification date
+ if (lastKnownModification != null &&

usersCache.get(id).equals(lastKnownModification)) {

+ throw new NotModifiedResponse();

+ }

+

23 Practical content

 User user = users.get(id);

 if (user == null) {

 throw new NotFoundResponse();

 }

+ LocalDateTime now;

+ if (usersCache.containsKey(user.id)) {

+ // If it is already in the cache, get the last modification date

+ now = usersCache.get(user.id);

+ } else {

+ // Otherwise, set to the current date

+ now = LocalDateTime.now();

+ usersCache.put(user.id, now);

+ }

+

+ // Add the last modification date to the response

+ ctx.header("Last-Modified", String.valueOf(now));

 ctx.json(user);

 }

 public void getMany(Context ctx) {

+ // Get the last known modification date of all users

+ LocalDateTime lastKnownModification =

+ ctx.headerAsClass("If-Modified-Since", LocalDateTime.class).getOrDefault(null);

+

+ // Check if all users have been modified since the last known modification date

+ if (lastKnownModification != null

+ && usersCache.containsKey(RESERVED_ID_TO_IDENTIFY_ALL_USERS)

+ && usersCache.get(RESERVED_ID_TO_IDENTIFY_ALL_USERS).equals(lastKnownModification)) {

+ throw new NotModifiedResponse();

+ }

+

 String firstName = ctx.queryParam("firstName");

 String lastName = ctx.queryParam("lastName");

 List<User> users = new ArrayList<>();

 for (User user : this.users.values()) {

 if (firstName != null && !user.firstName.equalsIgnoreCase(firstName)) {

24 Practical content

 continue;

 }

 if (lastName != null && !user.lastName.equalsIgnoreCase(lastName)) {

 continue;

 }

 users.add(user);

 }

+ LocalDateTime now;

+ if (usersCache.containsKey(RESERVED_ID_TO_IDENTIFY_ALL_USERS)) {

+ // If it is already in the cache, get the last modification date

+ now = usersCache.get(RESERVED_ID_TO_IDENTIFY_ALL_USERS);

+ } else {

+ // Otherwise, set to the current date

+ now = LocalDateTime.now();

+ usersCache.put(RESERVED_ID_TO_IDENTIFY_ALL_USERS, now);

+ }

+

+ // Add the last modification date to the response

+ ctx.header("Last-Modified", String.valueOf(now));

 ctx.json(users);

 }

 public void update(Context ctx) {

 Integer id = ctx.pathParamAsClass("id", Integer.class).get();

+ // Get the last known modification date of the user

+ LocalDateTime lastKnownModification =

+ ctx.headerAsClass("If-Unmodified-Since", LocalDateTime.class).getOrDefault(null);

+

+ // Check if the user has been modified since the last known modification date
+ if (lastKnownModification != null && !

usersCache.get(id).equals(lastKnownModification)) {

+ throw new PreconditionFailedResponse();

+ }

+

 User updateUser =

 ctx.bodyValidator(User.class)

25 Practical content

 .check(obj -> obj.firstName != null, "Missing first name")

 .check(obj -> obj.lastName != null, "Missing last name")

 .check(obj -> obj.email != null, "Missing email")

 .check(obj -> obj.password != null, "Missing password")

 .get();

 User user = users.get(id);

 if (user == null) {

 throw new NotFoundResponse();

 }

 user.firstName = updateUser.firstName;

 user.lastName = updateUser.lastName;

 user.email = updateUser.email;

 user.password = updateUser.password;

 users.put(id, user);

+ LocalDateTime now;

+ if (usersCache.containsKey(user.id)) {

+ // If it is already in the cache, get the last modification date

+ now = usersCache.get(user.id);

+ } else {

+ // Otherwise, set to the current date

+ now = LocalDateTime.now();

+ usersCache.put(user.id, now);

+

+ // Invalidate the cache for all users

+ usersCache.remove(RESERVED_ID_TO_IDENTIFY_ALL_USERS);

+ }

+

+ // Add the last modification date to the response

+ ctx.header("Last-Modified", String.valueOf(now));

 ctx.json(user);

 }

 public void delete(Context ctx) {

 Integer id = ctx.pathParamAsClass("id", Integer.class).get();

26 Practical content

In this code snippets, we have updated the UsersController.java to:

Use the Map to cache the results of your application

Store results in the cache

Return the Last-Modified header

Validate the cache with the If-Modified-Since header

Validate the cache with the If-Unmodified-Since header

Test the caching system with curl

Now that you have implemented the validation model based on the Last-

Modified header in your application, you can test the caching system.

To test the caching system, you can use the following steps:

Create a new user as client 1.

+ // Get the last known modification date of the user

+ LocalDateTime lastKnownModification =

+ ctx.headerAsClass("If-Unmodified-Since", LocalDateTime.class).getOrDefault(null);

+

+ // Check if the user has been modified since the last known modification date
+ if (lastKnownModification != null && !

usersCache.get(id).equals(lastKnownModification)) {

+ throw new PreconditionFailedResponse();

+ }

+

 if (!users.containsKey(id)) {

 throw new NotFoundResponse();

 }

 users.remove(id);

+ // Invalidate the cache for the user

+ usersCache.remove(id);

+

+ // Invalidate the cache for all users

+ usersCache.remove(RESERVED_ID_TO_IDENTIFY_ALL_USERS);

+

 ctx.status(HttpStatus.NO_CONTENT);

 }

 }

1.

2.

3.

4.

5.

1.

27 Practical content

Get the user as client 1.

Get the user as client 2.

Update the user as client 1.

Update the user as client 2 using the old Last-Modified header.

Get all users as client 1.

Create a new user as client 2.

Get all users as client 1 using the old Last-Modified header.

Use the following commands to test the caching system with curl to

simulate multiple clients and see if the cache is working as expected.

Create a new user as client 1

The output should be similar to the following:

The Last-Modified header indicates the date and time at which the resource

was last modified.

Get the user as client 1

Now that you have created a user as client 1, you can get the user as client

1, using the If-Modified-Since header:

2.

3.

4.

5.

6.

7.

8.

Create a new user as client 1

curl -i \

-X POST \

-H "Content-Type: application/json" \

-d '{"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}' \

 http://localhost:8080/users

HTTP/1.1 201 Created

Date: Fri, 06 Dec 2024 20:28:19 GMT

Content-Type: application/json

Last-Modified: 2024-12-06T21:28:19.140804844

Content-Length: 95

{"id":

1,"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}

Get the user as client 1

curl -i \

-X GET \

28 Practical content

The output should be similar to the following:

The 304 Not Modified response indicates that the resource has not been

modified since the time specified in the If-Modified-Since header.

Get the user as client 2

Now that you have gotten the user as client 1, you can get the user as client

2:

The output should be similar to the following:

As this is the first time client 2 has requested the user, the server has

returned a 200 OK response with the user and the Last-Modified header

corresponding to the date and time at which the resource was last

modified.

Update the user as client 1

Now that you have gotten the user as client 2, you can update the user as

client 1:

-H "If-Modified-Since: 2024-12-06T21:28:19.140804844" \

 http://localhost:8080/users/1

HTTP/1.1 304 Not Modified

Date: Fri, 06 Dec 2024 20:50:17 GMT

Content-Type: text/plain

Get the user as client 2

curl -i \

-X GET \

 http://localhost:8080/users/1

HTTP/1.1 200 OK

Date: Fri, 06 Dec 2024 20:50:43 GMT

Content-Type: application/json

Last-Modified: 2024-12-06T21:28:19.140804844

Content-Length: 95

{"id":

1,"firstName":"John","lastName":"Doe","email":"john.doe@example.com","password":"secret"}

29 Practical content

The output should be similar to the following:

The user has been updated successfully. The Last-Modified header indicates

the date and time at which the resource was last modified, updated since

the last time it was modified.

Update the user as client 2 using the old Last-Modified header

Now that you have updated the user as client 1, you can try to update the

user as client 2:

The output should be similar to the following:

Update the user with ID 1 as client 1

curl -i \

-X PUT \

-H "Content-Type: application/json" \

-H "If-Unmodified-Since: 2024-12-06T21:28:19.140804844" \

-d '{"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"}' \

 http://localhost:8080/users/1

HTTP/1.1 200 OK

Date: Fri, 06 Dec 2024 20:52:30 GMT

Content-Type: application/json

Last-Modified: 2024-12-06T21:52:30.542486768

Content-Length: 95

{"id":

1,"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"}

Update the user with ID 1 as client 2 using the old Last-Modified header

curl -i \

-X PUT \

-H "Content-Type: application/json" \

-H "If-Unmodified-Since: 2024-12-06T21:28:19.140804844" \

-d '{"firstName":"Jeanne","lastName":"Doe","email":"jeanne.doe@example.com","password":"secret"}' \

 http://localhost:8080/users/1

HTTP/1.1 412 Precondition Failed

Date: Fri, 06 Dec 2024 20:55:04 GMT

Content-Type: text/plain

Content-Length: 19

30 Practical content

The 412 Precondition Failed response indicates that the resource has been

modified since the time specified in the If-Unmodified-Since header. The client

cannot update the resource because the resource has been modified since

the last time the client requested it. The client has to get the resource again

to update it.

Get all users as client 1

Get all users as client 1:

The output should be similar to the following:

The list of users has been returned successfully. The Last-Modified header

indicates the date and time at which the resource was last modified.

If you try to get all users again, you will see that the response is cached

with a 304 Not Modified response:

Precondition Failed

Get all users as client 1

curl -i \

-X GET \

 http://localhost:8080/users

HTTP/1.1 200 OK

Date: Fri, 06 Dec 2024 21:05:23 GMT

Content-Type: application/json

Last-Modified: 2024-12-06T22:02:24.421558585

Content-Length: 97

[{"id":

1,"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"}]

Get all users as client 1 using the Last-Modified header

curl -i \

-X GET \

-H "If-Modified-Since: 2024-12-06T22:02:24.421558585" \

 http://localhost:8080/users

31 Practical content

Create a new user as client 2

Create a new user as client 2:

The output should be similar to the previous one you have seen when you

created a new user as client 1.

Get all users as client 1 using the old Last-Modified header

Get all users as client 1 using the old Last-Modified header:

The output should be similar to the following:

As the cache for the list of users has been invalidated (using the

RESERVED_ID_TO_IDENTIFY_ALL_USERS magic ID), the server has returned a 200 OK

response with the list of users and the Last-Modified header corresponding to

the date and time at which the resource was last modified.

Create a new user as client 2

curl -i \

-X POST \

-H "Content-Type: application/json" \

-d '{"firstName":"Alice","lastName":"Doe","email":"alice.doe@example.com","password":"secret"}' \

 http://localhost:8080/users

Get all users as client 1 using the old If-Modified-Since header

curl -i \

-X GET \

-H "If-Modified-Since: 2024-12-06T22:02:24.421558585" \

 http://localhost:8080/users

HTTP/1.1 200 OK

Date: Fri, 06 Dec 2024 21:08:11 GMT

Content-Type: application/json

Last-Modified: 2024-12-06T22:08:11.793635324

Content-Length: 195

[{"id":

1,"firstName":"Jane","lastName":"Doe","email":"jane.doe@example.com","password":"secret"},

{"id":

2,"firstName":"Alice","lastName":"Doe","email":"alice.doe@example.com","password":"secret"}]

32 Practical content

Test the caching system with a browser

You can also test the caching system with a browser to see if the cache is

working as expected.

We recommend creating the users with curl as it is easier than with a

browser. Then, you can use the browser to test the caching system of the

GET requests.

To check if the cache is working as expected, open the developer tools of

your browser and check the Network tab as seen in the chapter HTTP and

curl.

You can use the same steps as with curl to test the caching system with a

browser.

33 Practical content

https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/23-caching-and-performance
https://github.com/heig-vd-dai-course/heig-vd-dai-course/tree/main/23-caching-and-performance

Go further

This is an optional section. Feel free to skip it if you do not have time.

Are you able to add the expiration model to the validation model to use

both models at the same time?

Are you able to replace the Last-Modified validation model with the ETag

validation model in your application?

•

•

34 Practical content

Conclusion

What did you do and learn?

In this chapter, you have learned about caching mechanisms that are

offered by HTTP.

You have discovered the expiration and validation caching models.

You have implemented the validation model based on the Last-Modified

header in your application to improve the performance of the system.

You have tested the caching system with curl and a browser to simulate

multiple clients and see if the cache is working as expected:

If you run your application to get a user or all users with the If-Modified-

Since header, the application will check the cache and response with a

304 Not Modified status code. Not even the database is queried, more

performance!

If you run your application to create a new user, the application will

create a new record in the cache, invalidate the

RESERVED_ID_TO_IDENTIFY_ALL_USERS magic ID cache, and response with a

201 Created status code including the new Last-Modified header

If you run your application to update or delete a user with an old If-

Unmodified-Since header, the application will check the check the cache

and response with a 412 Precondition Failed status code - the client cannot

update or delete the resource because the resource has been modified

since the last time the client modified it

Test your knowledge

At this point, you should be able to answer the following questions:

What is a cache?

What is the expiration model?

What is the validation model?

What are the two types of conditional requests?

•

•

•

•

•

•

•

35 Conclusion

What are the headers used to implement the validation model based on

the Last-Modified header?

What are the headers used to implement the validation model based on

the ETag header?

•

•

36 Conclusion

Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

Note

Vous pouvez évidemment poser toutes vos questions et/ou vos

propositions d'améliorations en français ou en anglais.

N'hésitez pas à nous dire si vous avez des difficultés à comprendre un

concept ou si vous avez des difficultés à réaliser les éléments demandés

dans le cours. Nous sommes là pour vous aider !

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

37 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/511

What will you do next?

We are arriving at the end of the third part of the course. An evaluation will

be done to check your understanding of all the content seen in this third

part.

38 What will you do next?

Additional resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it!

•

39 Additional resources

Sources

Main illustration by Richard Horne on Unsplash•

40 Sources

https://unsplash.com/@richardhorne
https://unsplash.com/photos/black-and-blue-train-running-near-the-tunnel-2PKKbKEkmQE

	Caching and performance - Course material
	Table of contents
	Objectives
	Caching
	Types of caching
	CDN
	Where to cache?

	Managing cache with HTTP
	Expiration model
	Validation model
	Based on the Last-Modified header
	Based on the ETag header

	Is it possible to use both models?

	Managing cache with proxies
	Managing cache with key-value stores
	Practical content
	Update the Main.java class to cache the results
	Update the AuthController.java to cache the results
	Update the UsersController.java to cache the results
	Test the caching system with curl
	Create a new user as client 1
	Get the user as client 1
	Get the user as client 2
	Update the user as client 1
	Update the user as client 2 using the old Last-Modified header
	Get all users as client 1
	Create a new user as client 2
	Get all users as client 1 using the old Last-Modified header

	Test the caching system with a browser
	Go further

	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Sources

