
Caching with Javalin -
Course material

https://github.com/heig-vd-dai-course

Markdown · PDF

L. Delafontaine and H. Louis, with the help of GitHub Copilot.

Based on the original course by O. Liechti and J. Ehrensberger.

This work is licensed under the CC BY-SA 4.0 license.

https://github.com/heig-vd-dai-course
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/23-caching-with-javalin/COURSE_MATERIAL.md
https://heig-vd-dai-course.github.io/heig-vd-dai-course/23-caching-with-javalin/23-caching-with-javalin-practical-work.pdf
https://github.com/heig-vd-dai-course/heig-vd-dai-course/blob/main/LICENSE.md


Table of contents

Table of contents

Objectives

Prepare and setup your environment

Access your hosts file

Traefik

whoami

Functional and non-functional requirements

Web infrastructure definition

The Host header

Forward proxy and reverse proxy

Forward proxy

Reverse proxy

System scalability

Vertical scaling

Horizontal scaling

When to use scale up or scale out?

How to monitor your system?

Load balancing

Caching

Managing cache with HTTP

CDN

Where to cache?

Go further

Conclusion

What did you do and learn?

Test your knowledge

Finished? Was it easy? Was it hard?

What will you do next?

Additional resources

Sources

• 

• 

• 

 

 

 

• 

• 

• 

• 

 

 

• 

 

 

 

 

• 

• 

 

 

 

• 

• 

 

 

• 

• 

• 

• 

2 Table of contents



Objectives

In this chapter, you will learn how to build a web infrastructure.

You will learn how to use a reverse proxy and a load balancer to scale your

system.

Thanks to HTTP features, the reverse proxy will be able to serve multiple

domains on the same IP address.

You will also learn how to use caching to improve the performance of your

system.

Finally, you will learn how to monitor your system and how to calculate the

number of servers needed to handle a certain amount of requests.

3 Objectives



Prepare and setup your

environment

Access your hosts file

In this section, you will access your hosts file.

The host file is a computer file used by an operating system to map

hostnames to IP addresses. The hosts file is a plain text file and is

conventionally named hosts. The hosts file can be used as an alternative to

(or in conjunction with) DNS.

On Unix-like operating systems (Linux and macOS), the hosts file is located

at /etc/hosts.

On Windows, the hosts file is located at %WinDir%\System32\Drivers\Etc\Hosts.

Ensure you can access your hosts file and edit it for the next steps.

Traefik

In this section, you will install and configure Traefik using its official Docker

image available on Docker Hub: https://hub.docker.com/_/traefik.

Traefik is an open-source Edge Router that makes exposing/publishing your

services on the Internet a fun and easy experience. It receives requests on

behalf of your system and finds out which components are responsible for

handling them.

Traefik is full of features and can be used as a reverse proxy, a load

balancer, a Kubernetes ingress controller, and much more.

One of the main features of Traefik is to issue and renew Let's Encrypt

(HTTPS) certificates automatically in conjuncture with Docker Compose

labels.

We will go into more details about Traefik in the next sections.

4 Prepare and setup your environment

https://traefik.io/traefik/
https://hub.docker.com/_/traefik
https://letsencrypt.org/
https://docs.docker.com/compose/compose-file/compose-file-v3/#labels
https://docs.docker.com/compose/compose-file/compose-file-v3/#labels


Run the traefik-insecure example from the heig-vd-dai-course/heig-vd-dai-course-

code-examples repository. Read the README carefully. Take some time to

explore the code, it should contain comments to help you understand what

is going on.

You should be able to access the Traefik dashboard at http://localhost:8080

and http://traefik.localhost.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

Caddy

Nginx

Apache

HAProxy

certbot

Missing item in the list? Feel free to open a pull request to add it! 

whoami

whoami is a tiny Go webserver that prints os information and HTTP request

to output.

whoami is used to test various features of Traefik/HTTP.

In the next sections, you will use whoami to test Traefik/HTTP features using

its official Docker image available on Docker Hub: https://hub.docker.com/r/

traefik/whoami.

Alternatives

Alternatives are here for general knowledge. No need to learn them.

None yet

Missing item in the list? Feel free to open a pull request to add it! 

• 

• 

• 

• 

• 

• 

5 Prepare and setup your environment

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
http://localhost:8080
http://traefik.localhost
https://caddyserver.com/
https://www.nginx.com/
https://httpd.apache.org/
https://www.haproxy.org/
https://certbot.eff.org/
https://github.com/traefik/whoami
https://hub.docker.com/r/traefik/whoami
https://hub.docker.com/r/traefik/whoami


Functional and non-functional

requirements

Functional and non-functional requirements are used to define the scope of

a system.

It is an abstract representation of the system that will be implemented and

that can help to define the architecture of the system.

Functional requirements are the features that a system must have to satisfy

the needs of its users. It is the "what" of a system.

Some examples of functional requirements:

User management: Users must be able to register, login, logout, etc.

Product management: Users must be able to create, read, update,

delete products, etc.

Order management: Users must be able to create, read, update, delete

orders, etc.

Payment management: Users must be able to pay for their orders, etc.

In order to provide the features that a system must have, the system must

respect some constraints. These constraints are called non-functional

requirements.

Some examples of non-functional requirements:

Response time: Time required between a request and the presentation

of the result (most important for the end user)

Throughput: Number of requests handled per time interval (most

important for the service provider)

Scalability: Property of a system to handle a varying amount of work -

ideally we want linear scalability: 2x more server for 2x more users

Availability: Percentage of time that the system provides a satisfactory

service

Maintainability: Ease with which the system can be managed and

evolved

• 

• 

• 

• 

• 

• 

• 

• 

• 

6 Functional and non-functional requirements



Security: Confidentiality, integrity, availability, authentication,

authorization, etc.

...and many, many more: https://en.wikipedia.org/wiki/Non-

functional_requirement

Functional and non-functional requirements are used to define the scope of

a system and they strongly depend on/influence the architecture of a

system.

It is important to define the functional and non-functional requirements of

a system before starting to design it.

Implementing all requirements is not always possible. Some requirements

can be in conflict with each other. For example, increasing the security of a

system can decrease its performance.

It is always a trade-off between the requirements.

• 

• 

7 Functional and non-functional requirements

https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement


Web infrastructure definition

Caching with Javalin are the software and hardware resources that are used

to support the deployment of web applications, web services, and websites

on the Internet that respect the functional and non-functional

requirements of the system.

Caching with Javalin are composed of several components:

Web server: a computer that runs web server software and responds to

requests from a web client (e.g. a web browser, a mobile application, a

command line tool, etc.)

Reverse proxy: a proxy server that retrieves resources on behalf of a

client from one or more servers. These resources are then returned to

the client as though they originated from the proxy server itself.

Load balancer: a device that acts as a reverse proxy and distributes

network or application traffic across a number of servers.

Cache: a component that stores data so future requests for that data

can be served faster.

Content delivery network (CDN): a geographically distributed network of

proxy servers and their data centers.

In this chapter, we will explore a few of these components and how they

can be used to build a web infrastructure.

• 

• 

• 

• 

• 

8 Web infrastructure definition



The Host header

Thanks to the HTTP protocol, Caching with Javalin can be built easily. HTTP

offers many features that can be used to build a web infrastructure.

One of the feature HTTP offers is the Host header.

The Host header is a header which specifies the domain name of the server.

It is a header sent by the client.

Using this header, a server can handle multiple domains on the same IP

address with the help of a reverse proxy.

Before the Host header, a server could only handle one domain per IP

address. The following diagram shows how it worked:

The following PlantUML diagram shows how the Host header works:

9 The Host header



The reverse proxy receives the request from the client and forwards it to the

web server. The web server receives the request and sends a response to

the reverse proxy. The reverse proxy receives the response and forwards it

to the client.

10 The Host header



Forward proxy and reverse

proxy

Forward and reverse proxies are two different types of proxies.

A proxy is a component that acts as an intermediary for requests from

clients seeking resources from other servers.

Forward proxy

As described in Forward Proxy vs. Reverse Proxy: The Difference Explained

article, a forward proxy...

...also known as a proxy server, operates between clients and external

systems, regulating traffic, masking client IP addresses, and enforcing

security policies.

It acts as an intermediary for requests from clients seeking resources from

other servers. A forward proxy is a proxy configured to handle requests from

a group of clients to any other server.

Forward proxies are often used in corporate environments to enforce

security policies (e.g. block access to certain websites, etc.) and resides in

the LAN network.

11 Forward proxy and reverse proxy

https://www.strongdm.com/blog/difference-between-proxy-and-reverse-proxy


Reverse proxy

As described in Forward Proxy vs. Reverse Proxy: The Difference Explained

article, a reverse proxy...

...is positioned between clients and servers, acting as a protective

barrier for servers by accepting client requests, forwarding them to

the appropriate server, and returning the results to the client.

It acts as an intermediary for requests from clients seeking resources from

other servers. A reverse proxy is a proxy configured to handle requests from

any client to a group of servers.

Reverse proxies are often used in Caching with Javalin to serve multiple

domains on the same IP address and to scale.

12 Forward proxy and reverse proxy

https://www.strongdm.com/blog/difference-between-proxy-and-reverse-proxy


Reverse proxies are used in Caching with Javalin to serve multiple domains

on the same IP address and to scale.

A reverse proxy is a component that sits in front of one or more servers. It

receives requests from clients and forwards them to the servers. It also

receives responses from the servers and forwards them back to the clients.

A reverse proxy can be used to:

Load balance: Reverse proxy can receive all traffic and distribute the

requests on a cluster of several identical Web server instances

Cache: Reverse proxy can keep in cache responses from servers for a

certain amount of time - if the same request is received again, the

reverse proxy can return the cached response instead of forwarding the

request to the server

Encrypt and decrypt traffic: Reverse proxy manages secure HTTPS

connections with clients and unsecure HTTP connections with servers

Protect servers from attacks (e.g. DDoS, SQL injection, etc.): By filtering

requests, reverse proxy can protect servers from attacks

Serve static content (e.g. images, videos, etc.): Reverse proxy can serve

static content from a cache

Serve multiple domains on the same IP address: Reverse proxy can use

the Host header to forward requests to the correct server

• 

• 

• 

• 

• 

• 

13 Forward proxy and reverse proxy



A reverse proxy is a very powerful component that can be used to build a

web infrastructure.

Run the whoami-with-traefik-pathprefix-rule example from the heig-vd-dai-course/

heig-vd-dai-course-code-examples repository. Read the README carefully. Take

some time to explore the code, it should contain comments to help you

understand what is going on.

You should be able to access whoami at http://localhost/whoami.

The output should be similar to the following:

Note the following headers:

Hostname: the domain name of the whoami container

IP: the IP addresses of the whoami container

GET /whoami HTTP/1.1: the HTTP request from the client

Host: localhost: the domain name requested by the client

Hostname: 629ffa2f25bd

IP: 127.0.0.1

IP: 172.26.0.3

RemoteAddr: 172.26.0.2:40742

GET /whoami HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:120.0) Gecko/20100101 Firefox/

120.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/

*;q=0.8

Accept-Encoding: gzip, deflate, br

Accept-Language: en-GB,en;q=0.5

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

Upgrade-Insecure-Requests: 1

X-Forwarded-For: 192.168.65.1

X-Forwarded-Host: localhost

X-Forwarded-Port: 80

X-Forwarded-Proto: http

X-Forwarded-Server: 880dafe26d2a

X-Real-Ip: 192.168.65.1

• 

• 

• 

• 

14 Forward proxy and reverse proxy

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
http://localhost/whoami


X-Forwarded-For: the IP address of the client

X-Forwarded-Host: the domain name of the client

X-Forwarded-Port: the port of the client

X-Forwarded-Proto: the protocol of the client

X-Forwarded-Server: the hostname of the reverse proxy container

Using both the Host header, the HTTP request and the X-Forwarded-* headers,

the reverse proxy can forward the request to the correct server (whoami

container).

The request from the client has been forwarded to the reverse proxy. The

reverse proxy has forwarded the request to the whoami container. The

whoami container has sent a response to the reverse proxy. The reverse

proxy has forwarded the response to the client.

Now, run the whoami-with-traefik-host-rule example from the heig-vd-dai-course/

heig-vd-dai-course-code-examples repository. Read the README carefully. Take

some time to explore the code, it should contain comments to help you

understand what is going on.

You should be able to access whoami at http://whoami.localhost.

Same as before, but this time, the reverse proxy has mapped the 

whoami.localhost domain to the whoami container.

Now, run the whoami-with-traefik-host-and-pathprefix-rules example from the 

heig-vd-dai-course/heig-vd-dai-course-code-examples repository. Read the README

carefully. Take some time to explore the code, it should contain comments

to help you understand what is going on.

You should be able to access whoami at http://whoami.localhost/whoami.

Same as before, but this time, the reverse proxy has mapped the 

whoami.localhost domain and the /whoami path to the whoami container.

Now, run the whoami-with-traefik-pathprefix-rule-and-stripper-middleware example

from the heig-vd-dai-course/heig-vd-dai-course-code-examples repository. Read

the README carefully. Take some time to explore the code, it should contain

comments to help you understand what is going on.

You should be able to access whoami at http://localhost/whoami-without-

stripprefix and http://localhost/whoami-with-stripprefix.

• 

• 

• 

• 

• 

15 Forward proxy and reverse proxy

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
http://whoami.localhost
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
http://whoami.localhost/whoami
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
http://localhost/whoami-without-stripprefix
http://localhost/whoami-without-stripprefix
http://localhost/whoami-with-stripprefix


The output of http://localhost/whoami-without-stripprefix should be

similar to the following:

The output of http://localhost/whoami-with-stripprefix should be similar to

the following:

Hostname: 25eeca6ff2bb

IP: 127.0.0.1

IP: 172.26.0.5

RemoteAddr: 172.26.0.2:55338

GET /whoami-without-stripprefix HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:120.0) Gecko/20100101 Firefox/

120.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/

*;q=0.8

Accept-Encoding: gzip, deflate, br

Accept-Language: en-GB,en;q=0.5

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

Upgrade-Insecure-Requests: 1

X-Forwarded-For: 192.168.65.1

X-Forwarded-Host: localhost

X-Forwarded-Port: 80

X-Forwarded-Proto: http

X-Forwarded-Server: 880dafe26d2a

X-Real-Ip: 192.168.65.1

Hostname: 27cf1df3b435

IP: 127.0.0.1

IP: 172.26.0.4

RemoteAddr: 172.26.0.2:33656

GET / HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:120.0) Gecko/20100101 Firefox/

120.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/

*;q=0.8

Accept-Encoding: gzip, deflate, br

16 Forward proxy and reverse proxy

http://localhost/whoami-without-stripprefix
http://localhost/whoami-with-stripprefix


You should notice the following differences:

GET /whoami-without-stripprefix HTTP/1.1: the HTTP request from the client

GET / HTTP/1.1: the HTTP request from the client

The reverse proxy has stripped the /whoami-with-stripprefix path from the

request before forwarding it to the whoami container. The whoami

container has received the request without the /whoami-with-stripprefix path

as if it was the root path, thanks to the stripprefix middleware.

This configuration can be useful in some contexts (e.g. when you want to

serve static content from a subdirectory).

Thanks to these capabilities, a reverse proxy can be used to build a web

infrastructure that can serve multiple domains on the same IP address and

that can scale.

Accept-Language: en-GB,en;q=0.5

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

Upgrade-Insecure-Requests: 1

X-Forwarded-For: 192.168.65.1

X-Forwarded-Host: localhost

X-Forwarded-Port: 80

X-Forwarded-Prefix: /whoami-with-stripprefix

X-Forwarded-Proto: http

X-Forwarded-Server: 880dafe26d2a

X-Real-Ip: 192.168.65.1

• 

• 

17 Forward proxy and reverse proxy



System scalability

System scalability is the capability of a system to handle a growing amount

of work, or its potential to be enlarged to accommodate that growth.

In Caching with Javalin, scalability is the capability of a system to handle a

growing amount of requests that are sent by clients to one or more servers.

There are two types of scalability:

Vertical scaling: adding more resources (CPU/RAM/Disk) to an existing

server. This is also called scaling up.

Horizontal scaling: adding more servers to an existing system. Then, use

load-balancing to distribute the work between the servers. This is also

called scaling out.

Some variations of these two main types of scalability exist, such as elastic

scaling (adding or removing resources (CPU/RAM/Disk) on the fly). However,

we will not cover them in this course.

Both vertical and horizontal scaling are used to improve the performance of

a system to handle more requests (e.g. a lot of users on your website).

Vertical scaling

Vertical scaling is limited by the hardware: at a certain point, you cannot

add more/better resources to a server.

Horizontal scaling

Horizontal scaling is often limited by the software.

Instead of adding more resources to your server, you add more (smaller)

servers to your system.

• 

• 

18 System scalability



Your software must be able to scale horizontally as well (multiple

backends/API accessing to one or more databases at the same time,

multiple frontends accessing the same backends, etc.), and it is not always

possible.

When to use scale up or scale out?

Scaling must be determined by the non-functional requirements (= needs)

of of your system. In order to determine the best scaling strategy, you must

know the bottlenecks of your system. Bottlenecks can only be identified by

load testing your system and monitoring it to get metrics.

There are a few metrics that can help you to determine the bottlenecks of

your system:

CPU usage

Memory usage

Disk usage

Network usage

Number of requests per second

Response time

Availability

etc.

Only from metrics, you can determine the bottlenecks of your system.

Once you know the bottlenecks of your system, you can determine the best

scaling strategy.

I (Ludovic) recommend to use vertical scaling as much as possible before

switching to horizontal scaling. Adding new resources to a server is (usually)

easy and fast. Horizontal scaling is (much) more complex to setup and

maintain and can introduce new issues (e.g. network latency, data

consistency, etc.). It is also more expensive (usually).

How to monitor your system?

There are a lot of tools to monitor your system. Here are a few examples:

Prometheus

Grafana

Sentry

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

19 System scalability

https://prometheus.io/
https://grafana.com/
https://sentry.io/


LibreNMS

Monitoring your system is a complex task and is out of the scope of this

course. You will learn more about monitoring in future courses.

• 

20 System scalability

https://www.librenms.org/


Load balancing

Load balancing is the process of distributing a set of tasks over a set of

resources (computing units), with the aim of making their overall processing

more efficient.

Thanks to the reverse proxy and the Host header, a load balancer can be

used to distribute requests between multiple servers to achieve horizontal

scaling. This is only possible thanks to the fact that HTTP is a stateless

protocol.

In order to distribute requests between multiple servers, a load balancer

must know the servers it can forward requests to. This is called a pool of

servers.

A load balancer can distribute requests between multiple servers using

different strategies:

Round-robin: the load balancer forwards requests to each server in the

pool in turn.

Sticky sessions: the load balancer forwards requests from the same

client to the same server with the help of a cookie.

Least connections: the load balancer forwards requests to the server

with the least number of active connections.

Least response time: the load balancer forwards requests to the server

with the least response time.

Hashing: the load balancer forwards requests to the server based on a

hash of the request (e.g. the IP address of the client, the URL of the

request, etc.).

Run the whoami-with-traefik-host-rule-and-sticky-sessions example from the heig-

vd-dai-course/heig-vd-dai-course-code-examples repository. Read the README

carefully. Take some time to explore the code, it should contain comments

to help you understand what is going on.

You should be able to access the whoami instances at http://

whoami1.localhost and http://whoami2.localhost.

Notice that the Hostname and IP values are different for each instance.

• 

• 

• 

• 

• 

21 Load balancing

https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
https://github.com/heig-vd-dai-course/heig-vd-dai-course-code-examples
http://whoami1.localhost
http://whoami1.localhost
http://whoami2.localhost


In the first example, the load balancer uses the round-robin strategy to

distribute requests between the three whoami instances.

In the second example, the load balancer uses the sticky-session strategy to

always forward requests from the same client to the same whoami instance

with the help of a cookie.

The sticky-session strategy is useful when you want to keep the state of a

client on the same server: if a client is making an order on your website,

you want to keep the state of the order on the same server to avoid issues.

22 Load balancing



Caching

Caching is the process of storing data in a cache. A cache is a temporary

storage component area where data is stored so that future requests for

that data can be served faster.

Caching can be used to improve the performance of a system by serving

cached data instead of processing a request again. Caching significantly

improves the performance of a system because it avoids processing the

same request multiple times.

This has several advantages:

The client will receive the response faster, especially when the client

itself (browser) has cached the response.

The server does not have to process the request (parse the request,

query the database, compose the response, etc).

The network does not have to carry the messages along the entire path

between client and server.

It however introduces some complexity because it is difficult to know when

to invalidate a cache. If a cache is not invalidated, it can serve stale data.

Caching can be done on the client-side or on the server-side:

Client-side caching: once a client has received a response from a server,

it can store the response in a cache. The next time the client needs the

same resource, it can use the cached response instead of sending a new

request to the server.

Server-side caching: the server stores data in a cache with the help of a

reverse proxy. The next time the server needs the same resource, it can

use the cached response instead of processing the request again.

Managing cache with HTTP

Managing cache is challenging because it is difficult to know when to

invalidate a cache. If a cache is not invalidated, it can serve stale data.

• 

• 

• 

• 

• 

23 Caching



There are two main caching models:

Expiration model: the cache is valid for a certain amount of time.

Validation model: the cache is valid until the data is modified.

Expiration and validation are two mechanisms that can be used to control

caching.

Expiration is the process of specifying how long a response can be cached.

Validation is the process of checking if a cached response is still valid.

Both can be used at the same time to improve the performance of the

system.

Much more details about caching with HTTP can be found on MDN Web

Docs: https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching.

Expiration model

The expiration model is the simplest caching model. It is described in RFC

2616.

The cache is invalidated after a certain amount of time. The cache can be

invalidated after a certain amount of time because the data is not expected

to change.

The expiration model can be used to cache static content (e.g. images,

videos, etc.) or to cache responses from servers to improve the performance

of the system.

The expiration model can be implemented with the following header:

Cache-Control: max-age=<number of seconds>: specifies the maximum amount

of seconds a resource will be considered fresh. and responses.

• 

• 

• 

24 Caching

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://datatracker.ietf.org/doc/html/rfc2616#section-13.2
https://datatracker.ietf.org/doc/html/rfc2616#section-13.2


25 Caching



Validation model

The validation model is more complex than the expiration model. It is

described in RFC 2616.

The cache is invalidated when the data is modified. The cache can be

invalidated when the data is modified because the data is expected to

change.

The validation model can be used to cache responses from servers to

improve the performance of the system.

The main idea of the validation model is:

Send a request to the server to check if the data has changed.

If the data has not changed, the server can return a 304 Not Modified

response to the client.

If the data has changed, the server can return a 200 OK response to the

client with the new data.

The request to check if the data has changed is called a conditional

request.

There are two types of conditional requests:

Based on the Last-Modified header: allows a 304 Not Modified to be

returned if content is unchanged since the last time it was modified.

Based on the ETag header: allows a 304 Not Modified to be returned if

content is unchanged for the version/hash of the given entity.

Based on the Last-Modified header

With HTTP, the validation model can be implemented with the following

headers:

Last-Modified: indicates the date and time at which the origin server

believes the selected representation was last modified.

If-Modified-Since: allows a 304 Not Modified to be returned if content is

unchanged since the time specified in this field (= the value of the Last-

Modified header).

The Last-Modified header is used to check if the data has changed since the

last time it was modified.

1. 

2. 

3. 

• 

• 

• 

• 

26 Caching

https://datatracker.ietf.org/doc/html/rfc2616#section-13.3


27 Caching



Based on the ETag header

With HTTP, the validation model can be implemented with the following

headers:

ETag: provides the current entity tag for the selected representation.

Think of it like a version number or a hash for the given resource.

If-None-Match: allows a 304 Not Modified to be returned if content is

unchanged for the entity specified (ETag) by this field (= the value of the 

ETag header).

The ETag header is used to check if the data has changed since the last time

it was modified.

• 

• 

28 Caching



29 Caching



CDN

Content delivery networks (CDNs) are a type of cache that can be used to

serve static content (e.g. images, videos, etc.) to clients.

A CDN is a geographically distributed network of proxy servers and their

data centers.

A CDN can be used to improve the performance of a system by serving

static content to clients from the closest server.

Where to cache?

Caching can be done on the client-side, on the server-side, or on a CDN.

Private caches are caches that are only used by one client. Public caches

are caches that are used by multiple clients.

The best would be to cache at each level of the system to ensure the best

performance but it is not always possible or faisable.

30 Caching



Go further

This is an optional section. Feel free to skip it if you do not have time.

Are you able to add a basic authentication to the Traefik dashboard

using a middleware?

• 

31 Go further



Conclusion

What did you do and learn?

In this chapter, you have learned about functional and non-functional

requirements, what a web infrastructure is and what components it is

composed of, what a reverse proxy and a load balancer are and how they

can be used to build a web infrastructure.

Thanks to the Host header, you have learned how a reverse proxy can serve

multiple domains on the same IP address.

Thanks to the following features of HTTP, you were able to make use of

them to build a web infrastructure to serve multiple domains on the same

IP address and to scale:

Statelessness: HTTP servers don’t have to store information about the

state of a client: the client has to send all the information with each

request (a cookie session for example) so the server can find the

context to handle the request.

Scalability: Several identical servers can handle requests without

coordination: the client can send a request to any server, and the server

can handle the request.

Reliability: After a server failure, another server can easily take over the

work (if the server is stateless).

Test your knowledge

At this point, you should be able to answer the following questions:

What is a reverse proxy? What is a load balancer? How do they differ?

What is the Host header? How can it be used to serve multiple domains

on the same IP address?

What is the difference between vertical and horizontal scaling?

What is the difference between a CDN and a reverse proxy cache?

What is the difference between expiration and validation caching

models?

• 

• 

• 

• 

• 

• 

• 

• 

32 Conclusion



Finished? Was it easy? Was it

hard?

Can you let us know what was easy and what was difficult for you during

this chapter?

This will help us to improve the course and adapt the content to your

needs. If we notice some difficulties, we will come back to you to help you.

➡ GitHub Discussions

You can use reactions to express your opinion on a comment!

33 Finished? Was it easy? Was it hard?

https://github.com/orgs/heig-vd-dai-course/discussions/122


What will you do next?

You will start the practical work!

34 What will you do next?



Additional resources

Resources are here to help you. They are not mandatory to read.

None yet

Missing item in the list? Feel free to open a pull request to add it! 

• 

35 Additional resources



Sources

Main illustration by Nicolas Picard on Unsplash• 

36 Sources

https://unsplash.com/@artnok
https://unsplash.com/photos/-lp8sTmF9HA

	Caching with Javalin - Course material
	Table of contents
	Objectives
	Prepare and setup your environment
	Access your hosts file
	Traefik
	Alternatives

	whoami
	Alternatives


	Functional and non-functional requirements
	Web infrastructure definition
	The Host header
	Forward proxy and reverse proxy
	Forward proxy
	Reverse proxy

	System scalability
	Vertical scaling
	Horizontal scaling
	When to use scale up or scale out?
	How to monitor your system?

	Load balancing
	Caching
	Managing cache with HTTP
	Expiration model
	Validation model
	Based on the Last-Modified header
	Based on the ETag header


	CDN
	Where to cache?

	Go further
	Conclusion
	What did you do and learn?
	Test your knowledge

	Finished? Was it easy? Was it hard?
	What will you do next?
	Additional resources
	Sources


